BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 27122157)

  • 1. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
    Memme JM; Oliveira AN; Hood DA
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C1024-36. PubMed ID: 27122157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unfolded protein response in relation to mitochondrial biogenesis in skeletal muscle cells.
    Mesbah Moosavi ZS; Hood DA
    Am J Physiol Cell Physiol; 2017 May; 312(5):C583-C594. PubMed ID: 28274921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle.
    Vainshtein A; Tryon LD; Pauly M; Hood DA
    Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y; Hood DA
    Physiol Rep; 2017 Jul; 5(14):. PubMed ID: 28720712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells.
    Parousis A; Carter HN; Tran C; Erlich AT; Mesbah Moosavi ZS; Pauly M; Hood DA
    Autophagy; 2018; 14(11):1886-1897. PubMed ID: 30078345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chronic contractile activity on mRNA stability in skeletal muscle.
    Lai RY; Ljubicic V; D'souza D; Hood DA
    Am J Physiol Cell Physiol; 2010 Jul; 299(1):C155-63. PubMed ID: 20375275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of PGC-1α in contractile activity-induced mitochondrial adaptations.
    Uguccioni G; Hood DA
    Am J Physiol Endocrinol Metab; 2011 Feb; 300(2):E361-71. PubMed ID: 21081705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner.
    Erlich AT; Brownlee DM; Beyfuss K; Hood DA
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C62-C72. PubMed ID: 29046293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations.
    Irrcher I; Adhihetty PJ; Sheehan T; Joseph AM; Hood DA
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1669-77. PubMed ID: 12734114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.
    Kang C; Chung E; Diffee G; Ji LL
    Exp Gerontol; 2013 Nov; 48(11):1343-50. PubMed ID: 23994518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout.
    Ogborn DI; McKay BR; Crane JD; Parise G; Tarnopolsky MA
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(6):R664-9. PubMed ID: 25009220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress.
    Hulmi JJ; Hentilä J; DeRuisseau KC; Oliveira BM; Papaioannou KG; Autio R; Kujala UM; Ritvos O; Kainulainen H; Korkmaz A; Atalay M
    Free Radic Biol Med; 2016 Oct; 99():308-322. PubMed ID: 27554968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle.
    Su Z; Klein JD; Du J; Franch HA; Zhang L; Hassounah F; Hudson MB; Wang XH
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1128-F1140. PubMed ID: 28381463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle.
    Gurd BJ; Yoshida Y; McFarlan JT; Holloway GP; Moyes CD; Heigenhauser GJ; Spriet L; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2011 Jul; 301(1):R67-75. PubMed ID: 21543634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 78-kD Glucose-Regulated Protein Regulates Endoplasmic Reticulum Homeostasis and Distal Epithelial Cell Survival during Lung Development.
    Flodby P; Li C; Liu Y; Wang H; Marconett CN; Laird-Offringa IA; Minoo P; Lee AS; Zhou B
    Am J Respir Cell Mol Biol; 2016 Jul; 55(1):135-49. PubMed ID: 26816051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle.
    Carter HN; Pauly M; Tryon LD; Hood DA
    J Appl Physiol (1985); 2018 Jun; 124(6):1605-1615. PubMed ID: 29543139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle immobilization and remobilization downregulates PGC-1α signaling and the mitochondrial biogenesis pathway.
    Kang C; Ji LL
    J Appl Physiol (1985); 2013 Dec; 115(11):1618-25. PubMed ID: 23970536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training-induced mitochondrial adaptation: role of peroxisome proliferator-activated receptor γ coactivator-1α, nuclear factor-κB and β-blockade.
    Feng H; Kang C; Dickman JR; Koenig R; Awoyinka I; Zhang Y; Ji LL
    Exp Physiol; 2013 Mar; 98(3):784-95. PubMed ID: 23104933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.