These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27122420)

  • 21. Evaluation and comparison of the electrostatic dust print lifter and the electrostatic detection apparatus on the development of footwear impressions on paper.
    Craig CL; Hornsby BM; Riles M
    J Forensic Sci; 2006 Jul; 51(4):819-26. PubMed ID: 16882226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system.
    Venkatasubramanian G; Hegde V; Lund SP; Iyer H; Herman M
    J Forensic Sci; 2021 Nov; 66(6):2232-2251. PubMed ID: 34374992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collection of Wet-Origin Footwear Impressions on Various Surfaces Using an Electrostatic Dust Print Lifter.
    Hong S; Park M
    J Forensic Sci; 2018 Sep; 63(5):1516-1520. PubMed ID: 29351360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape.
    Richetelli N; Nobel M; Bodziak WJ; Speir JA
    Forensic Sci Int; 2017 Jan; 270():211-222. PubMed ID: 27838107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Location distribution of randomly acquired characteristics on a shoe sole.
    Kaplan-Damary N; Mandel M; Yekutieli Y; Shor Y; Wiesner S
    J Forensic Sci; 2022 Sep; 67(5):1801-1809. PubMed ID: 35855550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digitally processing an image of a shoe impression in blood.
    Daniel O; Levi A; Chaikovsky A; Cohen Y
    J Forensic Sci; 2021 May; 66(3):1143-1147. PubMed ID: 33332705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of image descriptors on the performance of classifiers of footwear outsole image pairs.
    Park S; Carriquiry A
    Forensic Sci Int; 2022 Feb; 331():111126. PubMed ID: 34922283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Optimal Distance of the Electrode to the Lifting Film Surface when Lifting Dust Footwear Impressions Using an Electrostatic Dust Print Lifter.
    Xie D; Hong H; Li D; Duo S; Feng Y
    J Forensic Sci; 2019 Nov; 64(6):1873-1877. PubMed ID: 31237978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimate of the random match frequency of acquired characteristics in footwear: Part II - Impressions in dust.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):134-150. PubMed ID: 38182308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of non-contact scanning to forensic podiatry: A feasibility study.
    Crowther M; Reidy S; Walker J; Islam M; Thompson T
    Sci Justice; 2021 Jan; 61(1):79-88. PubMed ID: 33357830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the variable of pressure in the production of test footwear impressions.
    Farrugia KJ; Riches P; Bandey H; Savage K; NicDaéid N
    Sci Justice; 2012 Sep; 52(3):168-76. PubMed ID: 22841140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Making tracks: the forensic analysis of footprints and footwear impressions.
    Naples VL; Miller JS
    Anat Rec B New Anat; 2004 Jul; 279(1):9-15. PubMed ID: 15278937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature.
    Park S; Carriquiry A
    Stat Anal Data Min; 2020 Apr; 13(2):188-199. PubMed ID: 32215164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of muddy footwear impressions.
    Theeuwen AB; van Barneveld S; Drok JW; Keereweer I; Lesger B; Limborgh JC; Naber WM; Schrok R; Velders T
    Forensic Sci Int; 2001 Jun; 119(1):57-67. PubMed ID: 11348794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical discrimination of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition techniques.
    Petraco ND; Gambino C; Kubic TA; Olivio D; Petraco N
    J Forensic Sci; 2010 Jan; 55(1):34-41. PubMed ID: 19895540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Technological innovation in the recovery and analysis of 3D forensic footwear evidence: Structure from motion (SfM) photogrammetry.
    Larsen H; Budka M; Bennett MR
    Sci Justice; 2021 Jul; 61(4):356-368. PubMed ID: 34172124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions.
    Austin Hicklin R; McVicker BC; Parks C; LeMay J; Richetelli N; Smith M; Buscaglia J; Perlman RS; Peters EM; Eckenrode BA
    Forensic Sci Int; 2022 Oct; 339():111418. PubMed ID: 35987091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A database of two-dimensional images of footwear outsole impressions.
    Park S; Carriquiry A
    Data Brief; 2020 Jun; 30():105508. PubMed ID: 32322634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Dimensional Accuracies Using Two Elastomeric Impression Materials in Casting Three-dimensional Tool Marks.
    Wang Z
    J Forensic Sci; 2016 May; 61(3):792-7. PubMed ID: 27122422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Journey history reconstruction from the soils and sediments on footwear: An empirical approach.
    Morgan RM; Scott KR; Ainley J; Bull PA
    Sci Justice; 2019 May; 59(3):306-316. PubMed ID: 31054819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.