BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27122446)

  • 21. Sulfur Doping: Unique Strategy To Improve the Supercapacitive Performance of Carbon Nano-onions.
    Mohapatra D; Dhakal G; Sayed MS; Subramanya B; Shim JJ; Parida S
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8040-8050. PubMed ID: 30714716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interconnected Phosphorus and Nitrogen Codoped Porous Exfoliated Carbon Nanosheets for High-Rate Supercapacitors.
    Jin J; Qiao X; Zhou F; Wu ZS; Cui L; Fan H
    ACS Appl Mater Interfaces; 2017 May; 9(20):17317-17325. PubMed ID: 28467035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors.
    Cai Y; Luo Y; Xiao Y; Zhao X; Liang Y; Hu H; Dong H; Sun L; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33060-33071. PubMed ID: 27805357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes.
    Chang H; Kang J; Chen L; Wang J; Ohmura K; Chen N; Fujita T; Wu H; Chen M
    Nanoscale; 2014 Jun; 6(11):5960-6. PubMed ID: 24769688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Porous VO
    Liu J; He X; Cai J; Zhou J; Liu B; Zhang S; Sun Z; Su P; Qu D; Li Y
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance.
    Liu WJ; Tian K; Ling LL; Yu HQ; Jiang H
    Environ Sci Technol; 2016 Nov; 50(22):12421-12428. PubMed ID: 27754666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly-N-phenylethanolamine for High-Performance Supercapacitor.
    Wei X; Wan S; Jiang X; Wang Z; Gao S
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22238-45. PubMed ID: 26394705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in-situ mild activation strategy for high-performance supercapacitors.
    Fu F; Yang D; Fan Y; Qiu X; Huang J; Li Z; Zhang W
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):90-99. PubMed ID: 35908435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.
    Zhou J; Bao L; Wu S; Yang W; Wang H
    Carbohydr Polym; 2017 Oct; 173():321-329. PubMed ID: 28732872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes.
    Fan H; Niu R; Duan J; Liu W; Shen W
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19475-83. PubMed ID: 27406686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.
    Wang L; Gao Z; Chang J; Liu X; Wu D; Xu F; Guo Y; Jiang K
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20234-44. PubMed ID: 26320745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors.
    Sun Y; Xue S; Sun J; Li X; Ou Y; Zhu B; Demir M
    J Colloid Interface Sci; 2023 Sep; 645():297-305. PubMed ID: 37150003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyaniline-Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors.
    Noh J; Jekal S; Yoon CM
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301923. PubMed ID: 37162216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors.
    Vadiyar MM; Liu X; Ye Z
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45805-45817. PubMed ID: 31724841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors.
    Sun L; Tian C; Fu Y; Yang Y; Yin J; Wang L; Fu H
    Chemistry; 2014 Jan; 20(2):564-74. PubMed ID: 24307432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen-doped carbon composite derived from ZIF-8/polyaniline@cellulose-derived carbon aerogel for high-performance symmetric supercapacitors.
    Shang M; Zhang X; Zhang J; Sun J; Zhao X; Yu S; Liu X; Liu B; Yi X
    Carbohydr Polym; 2021 Jun; 262():117966. PubMed ID: 33838832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors.
    Tabassum H; Mahmood A; Wang Q; Xia W; Liang Z; Qiu B; Zhao R; Zou R
    Sci Rep; 2017 Feb; 7():43084. PubMed ID: 28240224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.