BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27122552)

  • 1. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey.
    Holding ML; Biardi JE; Gibbs HL
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes.
    Pomento AM; Perry BW; Denton RD; Gibbs HL; Holding ML
    Toxicon; 2016 Aug; 118():149-55. PubMed ID: 27158112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins.
    Biardi JE; Chien DC; Coss RG
    J Chem Ecol; 2005 Nov; 31(11):2501-18. PubMed ID: 16273425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation.
    Poran NS; Coss RG; Benjamini E
    Toxicon; 1987; 25(7):767-77. PubMed ID: 3672545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins.
    Biardi JE; Chien DC; Coss RG
    J Chem Ecol; 2006 Jan; 32(1):137-54. PubMed ID: 16525875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey.
    Robinson KE; Holding ML; Whitford MD; Saviola AJ; Yates JR; Clark RW
    J Evol Biol; 2021 Sep; 34(9):1447-1465. PubMed ID: 34322920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels.
    Holding ML; Putman BJ; Kong LM; Smith JE; Clark RW
    Toxins (Basel); 2020 Sep; 12(10):. PubMed ID: 32992585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular basis of venom resistance in a rattlesnake-squirrel predator-prey system.
    Gibbs HL; Sanz L; PĂ©rez A; Ochoa A; Hassinger ATB; Holding ML; Calvete JJ
    Mol Ecol; 2020 Aug; 29(15):2871-2888. PubMed ID: 32593182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.
    Biardi JE; Coss RG
    Toxicon; 2011 Feb; 57(2):323-31. PubMed ID: 21184770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for prey relocation in viperid snakes.
    Saviola AJ; Chiszar D; Busch C; Mackessy SP
    BMC Biol; 2013 Mar; 11():20. PubMed ID: 23452837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake).
    Grabowsky ER; Mackessy SP
    Toxicon; 2019 Dec; 170():29-40. PubMed ID: 31513813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plethora of rodents: Rattlesnake predators generate unanticipated patterns of venom resistance in a grassland ecosystem.
    Balchan NR; Smith CF; Mackessy SP
    Toxicon X; 2024 Mar; 21():100179. PubMed ID: 38144228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus).
    Holding ML; Margres MJ; Rokyta DR; Gibbs HL
    J Evol Biol; 2018 Oct; 31(10):1513-1528. PubMed ID: 29959877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characterization of potential venom resistance proteins in California ground squirrels (Otospermophilus beecheyi) using transcriptome analyses.
    Ochoa A; Hassinger ATB; Holding ML; Gibbs HL
    J Exp Zool B Mol Dev Evol; 2023 May; 340(3):259-269. PubMed ID: 35611404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating local adaptation of a complex phenotype: reciprocal tests of pigmy rattlesnake venoms on treefrog prey.
    Smiley-Walters SA; Farrell TM; Gibbs HL
    Oecologia; 2017 Aug; 184(4):739-748. PubMed ID: 28516321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground squirrel tail-flag displays alter both predatory strike and ambush site selection behaviours of rattlesnakes.
    Barbour MA; Clark RW
    Proc Biol Sci; 2012 Sep; 279(1743):3827-33. PubMed ID: 22787023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator-prey pairs.
    Reimche JS; Brodie ED; Stokes AN; Ely EJ; Moniz HA; Thill VL; Hallas JM; Pfrender ME; Brodie ED; Feldman CR
    J Anim Ecol; 2020 Jul; 89(7):1645-1657. PubMed ID: 32198924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donning your enemy's cloak: ground squirrels exploit rattlesnake scent to reduce predation risk.
    Clucas B; Owings DH; Rowe MP
    Proc Biol Sci; 2008 Apr; 275(1636):847-52. PubMed ID: 18198147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes.
    Gibbs HL; Mackessy SP
    Toxicon; 2009 May; 53(6):672-9. PubMed ID: 19673082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. California ground squirrel (Spermophilus beecheyi) blood sera inhibits crotalid venom proteolytic activity.
    Biardi JE; Coss RG; Smith DG
    Toxicon; 2000 May; 38(5):713-21. PubMed ID: 10673162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.