These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 27122964)
21. Spermidine alleviates severity of murine experimental autoimmune encephalomyelitis. Guo X; Harada C; Namekata K; Kimura A; Mitamura Y; Yoshida H; Matsumoto Y; Harada T Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2696-703. PubMed ID: 21228387 [TBL] [Abstract][Full Text] [Related]
22. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Herges K; de Jong BA; Kolkowitz I; Dunn C; Mandelbaum G; Ko RM; Maini A; Han MH; Killestein J; Polman C; Goodyear AL; Dunn J; Steinman L; Axtell RC Mult Scler; 2012 Apr; 18(4):398-408. PubMed ID: 22343184 [TBL] [Abstract][Full Text] [Related]
23. Long-term suppression of neurodegeneration in chronic experimental optic neuritis: antioxidant gene therapy. Qi X; Sun L; Lewin AS; Hauswirth WW; Guy J Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5360-70. PubMed ID: 18055782 [TBL] [Abstract][Full Text] [Related]
24. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Grifka-Walk HM; Giles DA; Segal BM Eur J Immunol; 2015 Oct; 45(10):2780-6. PubMed ID: 26220255 [TBL] [Abstract][Full Text] [Related]
25. 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. Weng WT; Kuo PC; Brown DA; Scofield BA; Furnas D; Paraiso HC; Wang PY; Yu IC; Yen JH J Neuroinflammation; 2021 May; 18(1):110. PubMed ID: 33975618 [TBL] [Abstract][Full Text] [Related]
26. Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection. Khan RS; Dine K; Wessel H; Brown L; Shindler KS J Neuroophthalmol; 2019 Jun; 39(2):191-199. PubMed ID: 30829880 [TBL] [Abstract][Full Text] [Related]
27. Timing of corticosteroid therapy is critical to prevent retinal ganglion cell loss in experimental optic neuritis. Dutt M; Tabuena P; Ventura E; Rostami A; Shindler KS Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1439-45. PubMed ID: 19892867 [TBL] [Abstract][Full Text] [Related]
28. Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. Knier B; Rothhammer V; Heink S; Puk O; Graw J; Hemmer B; Korn T J Autoimmun; 2015 Jan; 56():34-44. PubMed ID: 25282335 [TBL] [Abstract][Full Text] [Related]
29. Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis. Jin J; Smith MD; Kersbergen CJ; Kam TI; Viswanathan M; Martin K; Dawson TM; Dawson VL; Zack DJ; Whartenby K; Calabresi PA Acta Neuropathol Commun; 2019 Jul; 7(1):125. PubMed ID: 31366377 [TBL] [Abstract][Full Text] [Related]
30. Optical neuritis induced by different concentrations of myelin oligodendrocyte glycoprotein presents different profiles of the inflammatory process. Soares RM; Dias AT; De Castro SB; Alves CC; Evangelista MG; Da Silva LC; Farias RE; Castanon MC; Juliano MA; Ferreira AP Autoimmunity; 2013 Nov; 46(7):480-5. PubMed ID: 24083391 [TBL] [Abstract][Full Text] [Related]
31. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis. Dal Monte M; Cammalleri M; Locri F; Amato R; Marsili S; Rusciano D; Bagnoli P Nutrients; 2018 Mar; 10(3):. PubMed ID: 29517994 [TBL] [Abstract][Full Text] [Related]
32. Sequential phases of RGC axonal and somatic injury in EAE mice examined using DTI and OCT. Nishioka C; Liang HF; Barsamian B; Sun SW Mult Scler Relat Disord; 2019 Jan; 27():315-323. PubMed ID: 30469023 [TBL] [Abstract][Full Text] [Related]
33. Neuroprotective effects of recombinant T-cell receptor ligand in autoimmune optic neuritis in HLA-DR2 mice. Adamus G; Brown L; Andrew S; Meza-Romero R; Burrows GG; Vandenbark AA Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):406-12. PubMed ID: 22167100 [TBL] [Abstract][Full Text] [Related]
34. Comparison of a classical Th1 bacteria versus a Th17 bacteria as adjuvant in the induction of experimental autoimmune encephalomyelitis. Smith AJ; Liu Y; Peng H; Beers R; Racke MK; Lovett-Racke AE J Neuroimmunol; 2011 Aug; 237(1-2):33-8. PubMed ID: 21715026 [TBL] [Abstract][Full Text] [Related]
35. Non-Invasive Evaluation of Retinal Vascular Alterations in a Mouse Model of Optic Neuritis Using Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography. Buscho SE; Xia F; Shi S; Lin JL; Szczesny B; Zhang W; Motamedi M; Liu H Cells; 2023 Nov; 12(23):. PubMed ID: 38067113 [TBL] [Abstract][Full Text] [Related]
36. Silencing c-Rel in macrophages dampens Th1 and Th17 immune responses and alleviates experimental autoimmune encephalomyelitis in mice. Zhang H; Bi J; Yi H; Fan T; Ruan Q; Cai L; Chen YH; Wan X Immunol Cell Biol; 2017 Aug; 95(7):593-600. PubMed ID: 28202908 [TBL] [Abstract][Full Text] [Related]
37. Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. Dietrich M; Helling N; Hilla A; Heskamp A; Issberner A; Hildebrandt T; Kohne Z; Küry P; Berndt C; Aktas O; Fischer D; Hartung HP; Albrecht P J Neuroinflammation; 2018 Mar; 15(1):71. PubMed ID: 29514678 [TBL] [Abstract][Full Text] [Related]
38. Effect of geranylgeranylacetone on optic neuritis in experimental autoimmune encephalomyelitis. Guo X; Harada C; Namekata K; Kikushima K; Mitamura Y; Yoshida H; Matsumoto Y; Harada T Neurosci Lett; 2009 Oct; 462(3):281-5. PubMed ID: 19616065 [TBL] [Abstract][Full Text] [Related]
39. Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis. Liu Q; Li H; Yang J; Niu X; Zhao C; Zhao L; Wang Z Biomed Pharmacother; 2017 Dec; 96():1363-1370. PubMed ID: 29198746 [TBL] [Abstract][Full Text] [Related]
40. Development and optimisation of an animal model for the study of ganglion cells in degenerative diseases of the retina and optic nerve. Feliciano-Sanchez A; García-Gil R; Cubas-Nuñez L; Castillo-Villalba J; Fuentes-Maestre J; Fil M; Gil-Perotin S; García-Verdugo JM Arch Soc Esp Oftalmol (Engl Ed); 2019 Jun; 94(6):263-272. PubMed ID: 30902474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]