These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2712332)

  • 41. Communication between primary endoderm and mesoderm for erythroblast differentiation in early chick blastoderm.
    Zagris N
    Exp Cell Biol; 1986; 54(3):170-4. PubMed ID: 3743867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation.
    Garcia-Martinez V; Alvarez IS; Schoenwolf GC
    J Exp Zool; 1993 Nov; 267(4):431-46. PubMed ID: 8270895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. BMP4 is essential for lens induction in the mouse embryo.
    Furuta Y; Hogan BL
    Genes Dev; 1998 Dec; 12(23):3764-75. PubMed ID: 9851982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Observations on the role of ectodermal spreading in the early stages of lens placode invagination in the chick embryo.
    Wakely J
    Exp Eye Res; 1984 Jun; 38(6):627-36. PubMed ID: 6468539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance.
    Van Der Starre H
    Acta Morphol Neerl Scand; 1978 May; 16(2):109-20. PubMed ID: 676800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ectoderm and mesoderm interactions in the limb bud of the chick embryo studied by transfilter cultures: cartilage differentiation and ultrastructural observations.
    Gumpel-Pinot M
    J Embryol Exp Morphol; 1980 Oct; 59():157-73. PubMed ID: 7217868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development.
    Vogel-Höpker A; Momose T; Rohrer H; Yasuda K; Ishihara L; Rapaport DH
    Mech Dev; 2000 Jun; 94(1-2):25-36. PubMed ID: 10842056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The question of lens regeneration from parts of the optic vesicle in the chick embryo.
    Wedlock DE; McCallion DJ
    Experientia; 1968 Jun; 24(6):620-1. PubMed ID: 5697757
    [No Abstract]   [Full Text] [Related]  

  • 49. The inducing capacities of the primary hypoblast as revealed by transfilter induction studies.
    Eyal-Giladi H; Wolk M
    Wilhelm Roux Arch Entwickl Mech Org; 1970 Sep; 165(3):226-241. PubMed ID: 28304688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments.
    Azar Y; Eyal-Giladi H
    J Embryol Exp Morphol; 1981 Feb; 61():133-44. PubMed ID: 7264538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Researches on the formation of axial organs in the chick embryo. X. Further investigations on the role of ecto- and endoderm in somitogenesis.
    Sandor S; Fazakas-Todea I
    Morphol Embryol (Bucur); 1980; 26(1):29-32. PubMed ID: 6445489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The stages of flank ectoderm capable of responding to ridge induction in the chick embryo.
    Carrington JL; Fallon JF
    J Embryol Exp Morphol; 1984 Dec; 84():19-34. PubMed ID: 6533249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein synthetic patterns of tissues in the early chick embryo.
    Lovell-Badge RH; Evans MJ; Bellairs R
    J Embryol Exp Morphol; 1985 Feb; 85():65-80. PubMed ID: 4039357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The pattern of protein and glycoprotein synthesis in presumptive lens and non-lens ectoderm of the chicken embryo.
    Sullivan CH; Hart JP; Kramer J
    Rouxs Arch Dev Biol; 1991 Jun; 200(1):38-44. PubMed ID: 28305916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Compatibility of chick embryo eye anlagen with the ectoderm of the early amphibian gastrula in vitro].
    Mikhaĭlov AT
    Ontogenez; 1984; 15(5):542-7. PubMed ID: 6334262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Negative and positive auto-regulation of BMP expression in early eye development.
    Huang J; Liu Y; Filas B; Gunhaga L; Beebe DC
    Dev Biol; 2015 Nov; 407(2):256-64. PubMed ID: 26407529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphogenetic movements during the early development of the chick eye. An ultrastructural and spatial study. C. Obliteration of the lens stalk lumen and separation of the lens vesicle from the surface ectoderm.
    Schook P
    Acta Morphol Neerl Scand; 1980 Aug; 18(3):195-201. PubMed ID: 7191196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ability of the epithelium of diencephalic origin to differentiate into cells of the ocular lens.
    Jurić-Lekić G; Bulić-Jakus F; Kablar B; Svajger A
    Int J Dev Biol; 1991 Sep; 35(3):231-7. PubMed ID: 1814405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation.
    Kondoh H; Uchikawa M; Kamachi Y
    Int J Dev Biol; 2004; 48(8-9):819-27. PubMed ID: 15558474
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrastructural analysis of chick embryo blastoderms explanted in vitro in absence of endoderm. Differentiation capacity of mesoderm.
    Arias M; Garcia C; Villar JM
    Acta Anat (Basel); 1987; 128(1):27-32. PubMed ID: 3548200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.