These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 27123847)
1. Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. Murtaza M; Shan J; Matigian N; Todorovic M; Cook AL; Ravishankar S; Dong LF; Neuzil J; Silburn P; Mackay-Sim A; Mellick GD; Wood SA PLoS One; 2016; 11(4):e0154544. PubMed ID: 27123847 [TBL] [Abstract][Full Text] [Related]
2. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. Sherer TB; Betarbet R; Stout AK; Lund S; Baptista M; Panov AV; Cookson MR; Greenamyre JT J Neurosci; 2002 Aug; 22(16):7006-15. PubMed ID: 12177198 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Neuronal CoQ Millichap L; Turton N; Damiani E; Marcheggiani F; Orlando P; Silvestri S; Tiano L; Hargreaves IP Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928331 [TBL] [Abstract][Full Text] [Related]
4. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Rekha KR; Inmozhi Sivakamasundari R Neurochem Res; 2018 Oct; 43(10):1947-1962. PubMed ID: 30141137 [TBL] [Abstract][Full Text] [Related]
5. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Ambrosi G; Ghezzi C; Sepe S; Milanese C; Payan-Gomez C; Bombardieri CR; Armentero MT; Zangaglia R; Pacchetti C; Mastroberardino PG; Blandini F Biochim Biophys Acta; 2014 Sep; 1842(9):1385-94. PubMed ID: 24854107 [TBL] [Abstract][Full Text] [Related]
6. Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. Van Laar VS; Arnold B; Howlett EH; Calderon MJ; St Croix CM; Greenamyre JT; Sanders LH; Berman SB J Neurosci; 2018 Aug; 38(34):7505-7515. PubMed ID: 30030401 [TBL] [Abstract][Full Text] [Related]
7. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis. Berndt N; Holzhütter HG; Bulik S FEBS J; 2013 Oct; 280(20):5080-93. PubMed ID: 23937586 [TBL] [Abstract][Full Text] [Related]
8. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. Gao H; Yang W; Qi Z; Lu L; Duan C; Zhao C; Yang H J Mol Biol; 2012 Oct; 423(2):232-48. PubMed ID: 22898350 [TBL] [Abstract][Full Text] [Related]
9. Lowered iPLA Chao H; Liu Y; Fu X; Xu X; Bao Z; Lin C; Li Z; Liu Y; Wang X; You Y; Liu N; Ji J Exp Neurol; 2018 Feb; 300():74-86. PubMed ID: 29104115 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Xiong N; Long X; Xiong J; Jia M; Chen C; Huang J; Ghoorah D; Kong X; Lin Z; Wang T Crit Rev Toxicol; 2012 Aug; 42(7):613-32. PubMed ID: 22574684 [TBL] [Abstract][Full Text] [Related]
12. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease. Chinopoulos C; Adam-Vizi V J Neurochem; 2001 Jan; 76(1):302-6. PubMed ID: 11146003 [TBL] [Abstract][Full Text] [Related]
13. NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson's disease. Cook AL; Vitale AM; Ravishankar S; Matigian N; Sutherland GT; Shan J; Sutharsan R; Perry C; Silburn PA; Mellick GD; Whitelaw ML; Wells CA; Mackay-Sim A; Wood SA PLoS One; 2011; 6(7):e21907. PubMed ID: 21747966 [TBL] [Abstract][Full Text] [Related]
14. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Liu HF; Ho PW; Leung GC; Lam CS; Pang SY; Li L; Kung MH; Ramsden DB; Ho SL Sci Rep; 2017 Jan; 7():40887. PubMed ID: 28098219 [TBL] [Abstract][Full Text] [Related]
15. Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. Valdez LB; Zaobornyj T; Bandez MJ; López-Cepero JM; Boveris A; Navarro A Free Radic Biol Med; 2019 May; 135():274-282. PubMed ID: 30862545 [TBL] [Abstract][Full Text] [Related]
16. Crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR signaling pathway leading to neuronal apoptosis. Liu C; Ye Y; Zhou Q; Zhang R; Zhang H; Liu W; Xu C; Liu L; Huang S; Chen L Oncotarget; 2016 Feb; 7(7):7534-49. PubMed ID: 26859572 [TBL] [Abstract][Full Text] [Related]
17. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. Yadava N; Nicholls DG J Neurosci; 2007 Jul; 27(27):7310-7. PubMed ID: 17611283 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells. Watabe M; Nakaki T J Pharmacol Exp Ther; 2007 Nov; 323(2):499-507. PubMed ID: 17726156 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Watabe M; Nakaki T Mol Pharmacol; 2008 Oct; 74(4):933-40. PubMed ID: 18599602 [TBL] [Abstract][Full Text] [Related]
20. Energy status, ubiquitin proteasomal function, and oxidative stress during chronic and acute complex I inhibition with rotenone in mesencephalic cultures. Zeevalk GD; Bernard LP Antioxid Redox Signal; 2005; 7(5-6):662-72. PubMed ID: 15890011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]