BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 27123980)

  • 1. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
    Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y
    PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes.
    Hirano A; Yumimoto K; Tsunematsu R; Matsumoto M; Oyama M; Kozuka-Hata H; Nakagawa T; Lanjakornsiripan D; Nakayama KI; Fukada Y
    Cell; 2013 Feb; 152(5):1106-18. PubMed ID: 23452856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals.
    Tong X; Buelow K; Guha A; Rausch R; Yin L
    J Biol Chem; 2012 Jul; 287(30):25280-91. PubMed ID: 22669941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
    Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA
    Elife; 2015 Mar; 4():. PubMed ID: 25756610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRY2 and FBXL3 Cooperatively Degrade c-MYC.
    Huber AL; Papp SJ; Chan AB; Henriksson E; Jordan SD; Kriebs A; Nguyen M; Wallace M; Li Z; Metallo CM; Lamia KA
    Mol Cell; 2016 Nov; 64(4):774-789. PubMed ID: 27840026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The circadian E3 ligase complex SCF
    Correia SP; Chan AB; Vaughan M; Zolboot N; Perea V; Huber AL; Kriebs A; Moresco JJ; Yates JR; Lamia KA
    Sci Rep; 2019 Jan; 9(1):198. PubMed ID: 30655559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm.
    Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH
    J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex.
    Nangle SN; Rosensweig C; Koike N; Tei H; Takahashi JS; Green CB; Zheng N
    Elife; 2014 Aug; 3():e03674. PubMed ID: 25127877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals.
    Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T
    Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.
    Yoo SH; Mohawk JA; Siepka SM; Shan Y; Huh SK; Hong HK; Kornblum I; Kumar V; Koike N; Xu M; Nussbaum J; Liu X; Chen Z; Chen ZJ; Green CB; Takahashi JS
    Cell; 2013 Feb; 152(5):1091-105. PubMed ID: 23452855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
    Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD
    J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals.
    Dardente H; Mendoza J; Fustin JM; Challet E; Hazlerigg DG
    PLoS One; 2008; 3(10):e3530. PubMed ID: 18953409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins.
    Busino L; Bassermann F; Maiolica A; Lee C; Nolan PM; Godinho SI; Draetta GF; Pagano M
    Science; 2007 May; 316(5826):900-4. PubMed ID: 17463251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JMJD5 links CRY1 function and proteasomal degradation.
    Saran AR; Kalinowska D; Oh S; Janknecht R; DiTacchio L
    PLoS Biol; 2018 Nov; 16(11):e2006145. PubMed ID: 30500822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock.
    Chun SK; Jang J; Chung S; Yun H; Kim NJ; Jung JW; Son GH; Suh YG; Kim K
    ACS Chem Biol; 2014 Mar; 9(3):703-10. PubMed ID: 24387302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.
    Chaves I; Nijman RM; Biernat MA; Bajek MI; Brand K; da Silva AC; Saito S; Yagita K; Eker AP; van der Horst GT
    PLoS One; 2011; 6(8):e23447. PubMed ID: 21858120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
    Hirano A; Braas D; Fu YH; Ptáček LJ
    Cell Rep; 2017 Apr; 19(2):255-266. PubMed ID: 28402850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding promotes formation of the Skp1-Cul1-Fbxl3 (SCF(Fbxl3)) protein complex.
    Yumimoto K; Muneoka T; Tsuboi T; Nakayama KI
    J Biol Chem; 2013 Nov; 288(45):32766-32776. PubMed ID: 24085301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2.
    Parlak GC; Baris I; Gul S; Kavakli IH
    J Biol Chem; 2023 Dec; 299(12):105451. PubMed ID: 37951306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.