BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27123990)

  • 1. Heavy-Atom Labeled Transmembrane β-Peptides: Synthesis, CD-Spectroscopy, and X-ray Diffraction Studies in Model Lipid Multilayer.
    Rost U; Xu Y; Salditt T; Diederichsen U
    Chemphyschem; 2016 Aug; 17(16):2525-34. PubMed ID: 27123990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel heavy-atom label for side-specific peptide iodination: synthesis, membrane incorporation and X-ray reflectivity.
    Schneggenburger PE; Beerlink A; Worbs B; Salditt T; Diederichsen U
    Chemphyschem; 2009 Jul; 10(9-10):1567-76. PubMed ID: 19565579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering.
    Schneggenburger PE; Beerlink A; Weinhausen B; Salditt T; Diederichsen U
    Eur Biophys J; 2011 Apr; 40(4):417-36. PubMed ID: 21181143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR.
    Strandberg E; Ozdirekcan S; Rijkers DT; van der Wel PC; Koeppe RE; Liskamp RM; Killian JA
    Biophys J; 2004 Jun; 86(6):3709-21. PubMed ID: 15189867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of peptides in lipid membranes studied by x-ray grazing incidence scattering.
    Spaar A; Münster C; Salditt T
    Biophys J; 2004 Jul; 87(1):396-407. PubMed ID: 15240474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of β-peptide helices as transmembrane domains in lipid model membranes.
    Pahlke DM; Diederichsen U
    J Pept Sci; 2016 Oct; 22(10):636-641. PubMed ID: 27578420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction.
    Inouye H; Fraser PE; Kirschner DA
    Biophys J; 1993 Feb; 64(2):502-19. PubMed ID: 8457674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation and Interaction of a D,L-alternating peptide with a bilayer membrane: x-ray reflectivity, CD, and FTIR spectroscopy.
    Küsel A; Khattari Z; Schneggenburger PE; Banerjee A; Salditt T; Diederichsen U
    Chemphyschem; 2007 Nov; 8(16):2336-43. PubMed ID: 17935092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound peptides mimicking transmembrane Vph1p helix 7 of yeast V-ATPase: a spectroscopic and polarity mismatch study.
    Hesselink RW; Koehorst RB; Nazarov PV; Hemminga MA
    Biochim Biophys Acta; 2005 Oct; 1716(2):137-45. PubMed ID: 16257593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion.
    Siegel DP; Cherezov V; Greathouse DV; Koeppe RE; Killian JA; Caffrey M
    Biophys J; 2006 Jan; 90(1):200-11. PubMed ID: 16214859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling.
    Vogt B; Ducarme P; Schinzel S; Brasseur R; Bechinger B
    Biophys J; 2000 Nov; 79(5):2644-56. PubMed ID: 11053137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.
    Xu Y; Kuhlmann J; Brennich M; Komorowski K; Jahn R; Steinem C; Salditt T
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):566-578. PubMed ID: 29106973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic mismatch between helices and lipid bilayers.
    Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW
    Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.