These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 27124454)

  • 1. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipolar quantum solids emerging in a Hubbard quantum simulator.
    Su L; Douglas A; Szurek M; Groth R; Ozturk SF; Krahn A; Hébert AH; Phelps GA; Ebadi S; Dickerson S; Ferlaino F; Marković O; Greiner M
    Nature; 2023 Oct; 622(7984):724-729. PubMed ID: 37880438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system.
    Tomita T; Nakajima S; Danshita I; Takasu Y; Takahashi Y
    Sci Adv; 2017 Dec; 3(12):e1701513. PubMed ID: 29291246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phases from competing short- and long-range interactions in an optical lattice.
    Landig R; Hruby L; Dogra N; Landini M; Mottl R; Donner T; Esslinger T
    Nature; 2016 Apr; 532(7600):476-9. PubMed ID: 27064902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision measurements on a tunable Mott insulator of ultracold atoms.
    Mark MJ; Haller E; Lauber K; Danzl JG; Daley AJ; Nägerl HC
    Phys Rev Lett; 2011 Oct; 107(17):175301. PubMed ID: 22107531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum phase transitions of interacting bosons on hyperbolic lattices.
    Zhu X; Guo J; Breuckmann NP; Guo H; Feng S
    J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34111850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frustrated Extended Bose-Hubbard Model and Deconfined Quantum Critical Points with Optical Lattices at the Antimagic Wavelength.
    Baldelli N; Cabrera CR; Julià-Farré S; Aidelsburger M; Barbiero L
    Phys Rev Lett; 2024 Apr; 132(15):153401. PubMed ID: 38682994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staggered-vortex superfluid of ultracold bosons in an optical lattice.
    Lim LK; Smith CM; Hemmerich A
    Phys Rev Lett; 2008 Apr; 100(13):130402. PubMed ID: 18517921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice.
    Chen QH; Li P; Su H
    J Phys Condens Matter; 2016 Jun; 28(25):256001. PubMed ID: 27165440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mott-insulator States of ultracold atoms in optical resonators.
    Larson J; Damski B; Morigi G; Lewenstein M
    Phys Rev Lett; 2008 Feb; 100(5):050401. PubMed ID: 18352345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S; Cheinet P; Fölling S; Feld M; Schnorrberger U; Rey AM; Polkovnikov A; Demler EA; Lukin MD; Bloch I
    Science; 2008 Jan; 319(5861):295-9. PubMed ID: 18096767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.
    Gemelke N; Zhang X; Hung CL; Chin C
    Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP; Katsnelson MI
    Phys Rev Lett; 2015 Aug; 115(7):075301. PubMed ID: 26317726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.