These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 27124454)

  • 21. Mott-insulator transition in a two-dimensional atomic Bose gas.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2007 Feb; 98(8):080404. PubMed ID: 17359074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose-Hubbard system.
    Kato S; Inaba K; Sugawa S; Shibata K; Yamamoto R; Yamashita M; Takahashi Y
    Nat Commun; 2016 Apr; 7():11341. PubMed ID: 27094083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dipolar molecules in optical lattices.
    Sowiński T; Dutta O; Hauke P; Tagliacozzo L; Lewenstein M
    Phys Rev Lett; 2012 Mar; 108(11):115301. PubMed ID: 22540482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.
    Łącki M; Damski B; Zakrzewski J
    Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2008 Mar; 100(12):120402. PubMed ID: 18517841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultracold atoms in a disordered crystal of light: towards a bose glass.
    Fallani L; Lye JE; Guarrera V; Fort C; Inguscio M
    Phys Rev Lett; 2007 Mar; 98(13):130404. PubMed ID: 17501171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dipolar physics: a review of experiments with magnetic quantum gases.
    Chomaz L; Ferrier-Barbut I; Ferlaino F; Laburthe-Tolra B; Lev BL; Pfau T
    Rep Prog Phys; 2022 Dec; 86(2):. PubMed ID: 36583342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum Critical Behavior of Entanglement in Lattice Bosons with Cavity-Mediated Long-Range Interactions.
    Sharma S; Jäger SB; Kraus R; Roscilde T; Morigi G
    Phys Rev Lett; 2022 Sep; 129(14):143001. PubMed ID: 36240423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential.
    Kato Y; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021104. PubMed ID: 19391703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
    Meinert F; Mark MJ; Lauber K; Daley AJ; Nägerl HC
    Phys Rev Lett; 2016 May; 116(20):205301. PubMed ID: 27258874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergence of coherence and the dynamics of quantum phase transitions.
    Braun S; Friesdorf M; Hodgman SS; Schreiber M; Ronzheimer JP; Riera A; Del Rey M; Bloch I; Eisert J; Schneider U
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3641-6. PubMed ID: 25775515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
    Thomas CK; Barter TH; Leung TH; Okano M; Jo GB; Guzman J; Kimchi I; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2017 Sep; 119(10):100402. PubMed ID: 28949195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum Engineering of a Low-Entropy Gas of Heteronuclear Bosonic Molecules in an Optical Lattice.
    Reichsöllner L; Schindewolf A; Takekoshi T; Grimm R; Nägerl HC
    Phys Rev Lett; 2017 Feb; 118(7):073201. PubMed ID: 28256882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity.
    Cole WS; Zhang S; Paramekanti A; Trivedi N
    Phys Rev Lett; 2012 Aug; 109(8):085302. PubMed ID: 23002754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice.
    Ospelkaus S; Ospelkaus C; Wille O; Succo M; Ernst P; Sengstock K; Bongs K
    Phys Rev Lett; 2006 May; 96(18):180403. PubMed ID: 16712346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cold atom dynamics in a quantum optical lattice potential.
    Maschler C; Ritsch H
    Phys Rev Lett; 2005 Dec; 95(26):260401. PubMed ID: 16486317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow mass transport and statistical evolution of an atomic gas across the superfluid-Mott-insulator transition.
    Hung CL; Zhang X; Gemelke N; Chin C
    Phys Rev Lett; 2010 Apr; 104(16):160403. PubMed ID: 20482031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions.
    Hruby L; Dogra N; Landini M; Donner T; Esslinger T
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3279-3284. PubMed ID: 29519875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.