BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 27125191)

  • 1. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.
    Narayanan G; Vernekar VN; Kuyinu EL; Laurencin CT
    Adv Drug Deliv Rev; 2016 Dec; 107():247-276. PubMed ID: 27125191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(lactic acid) nanofibrous scaffolds for tissue engineering.
    Santoro M; Shah SR; Walker JL; Mikos AG
    Adv Drug Deliv Rev; 2016 Dec; 107():206-212. PubMed ID: 27125190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Poly(caprolactone)-based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine.
    Zhang W; Weng T; Li Q; Jin R; You C; Wu P; Shao J; Xia S; Yang M; Han C; Wang X
    Curr Stem Cell Res Ther; 2021; 16(4):414-442. PubMed ID: 33059569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of poly(lactic acid) in bone tissue engineering: A review article.
    Alavi MS; Memarpour S; Pazhohan-Nezhad H; Salimi Asl A; Moghbeli M; Shadmanfar S; Saburi E
    Artif Organs; 2023 Sep; 47(9):1423-1430. PubMed ID: 37475653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications.
    Murugan S; Parcha SR
    J Mater Sci Mater Med; 2021 Aug; 32(8):93. PubMed ID: 34379204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonwoven membranes for tissue engineering: an overview of cartilage, epithelium, and bone regeneration.
    Trevisol TC; Langbehn RK; Battiston S; Immich APS
    J Biomater Sci Polym Ed; 2019 Aug; 30(12):1026-1049. PubMed ID: 31106705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
    Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering.
    Rahmani M; Khani MM; Rabbani S; Mashaghi A; Noorizadeh F; Faridi-Majidi R; Ghanbari H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110626. PubMed ID: 32204067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule delivery through nanofibrous scaffolds for musculoskeletal regenerative engineering.
    Carbone EJ; Jiang T; Nelson C; Henry N; Lo KW
    Nanomedicine; 2014 Nov; 10(8):1691-9. PubMed ID: 24907464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.
    Sahito RG; Sureshkumar P; Sotiriadou I; Srinivasan SP; Sabour D; Hescheler J; Pfannkuche K; Sachinidis A
    Curr Med Chem; 2016; 23(6):589-602. PubMed ID: 26951086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycomics: New Challenges and Opportunities in Regenerative Medicine.
    Russo L; Cipolla L
    Chemistry; 2016 Sep; 22(38):13380-8. PubMed ID: 27400428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering.
    Liu Y; Wang S; Zhang R
    Int J Biol Macromol; 2017 Oct; 103():1130-1137. PubMed ID: 28528953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering.
    Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT
    Int J Biol Macromol; 2020 Nov; 162():1429-1441. PubMed ID: 32755711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.