These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27125461)

  • 21. Engineering multicomponent tissue by spontaneous adhesion of myogenic and adipogenic microtissues cultured with customized scaffolds.
    Kawecki NS; Norris SCP; Xu Y; Wu Y; Davis AR; Fridman E; Chen KK; Crosbie RH; Garmyn AJ; Li S; Mason TG; Rowat AC
    Food Res Int; 2023 Oct; 172():113080. PubMed ID: 37689860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate.
    Hosseini V; Ahadian S; Ostrovidov S; Camci-Unal G; Chen S; Kaji H; Ramalingam M; Khademhosseini A
    Tissue Eng Part A; 2012 Dec; 18(23-24):2453-65. PubMed ID: 22963391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation.
    Contreras O; Villarreal M; Brandan E
    Skelet Muscle; 2018 Feb; 8(1):5. PubMed ID: 29463296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro.
    Gersbach CA; Byers BA; Pavlath GK; Guldberg RE; García AJ
    Biotechnol Bioeng; 2004 Nov; 88(3):369-78. PubMed ID: 15486943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation.
    Altomare L; Riehle M; Gadegaard N; Tanzi MC; Farè S
    Int J Artif Organs; 2010 Aug; 33(8):535-43. PubMed ID: 20872348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterning the differentiation of C2C12 skeletal myoblasts.
    Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R
    Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.
    Conconi MT; De Coppi P; Bellini S; Zara G; Sabatti M; Marzaro M; Zanon GF; Gamba PG; Parnigotto PP; Nussdorfer GG
    Biomaterials; 2005 May; 26(15):2567-74. PubMed ID: 15585259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells.
    Cronin EM; Thurmond FA; Bassel-Duby R; Williams RS; Wright WE; Nelson KD; Garner HR
    J Biomed Mater Res A; 2004 Jun; 69(3):373-81. PubMed ID: 15127383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.
    Ostrovidov S; Ahadian S; Ramon-Azcon J; Hosseini V; Fujie T; Parthiban SP; Shiku H; Matsue T; Kaji H; Ramalingam M; Bae H; Khademhosseini A
    J Tissue Eng Regen Med; 2017 Feb; 11(2):582-595. PubMed ID: 25393357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional spherical gelatin bubble-based scaffold improves the myotube formation of H9c2 myoblasts.
    Mei C; Chao CW; Lin CW; Li ST; Wu KH; Yang KC; Yu J
    Biotechnol Bioeng; 2019 May; 116(5):1190-1200. PubMed ID: 30636318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.
    Palamà IE; D'Amone S; Coluccia AM; Gigli G
    Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings.
    Shahini A; Choudhury D; Asmani M; Zhao R; Lei P; Andreadis ST
    Stem Cell Res; 2018 Jan; 26():55-66. PubMed ID: 29245050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.
    Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S
    Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices.
    Mastrodimos M; Jain S; Badv M; Shen J; Montazerian H; Meyer CE; Annabi N; Weiss PS
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):47150-47162. PubMed ID: 39206938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame.
    Tsukamoto Y; Akagi T; Shima F; Akashi M
    Tissue Eng Part C Methods; 2017 Jun; 23(6):357-366. PubMed ID: 28471308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
    Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A
    Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.