BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 27125548)

  • 1. IDH1-Driven Reductive Carboxylation Supports Anchorage Independence.
    Cancer Discov; 2016 Jun; 6(6):570. PubMed ID: 27125548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
    Jiang L; Shestov AA; Swain P; Yang C; Parker SJ; Wang QA; Terada LS; Adams ND; McCabe MT; Pietrak B; Schmidt S; Metallo CM; Dranka BP; Schwartz B; DeBerardinis RJ
    Nature; 2016 Apr; 532(7598):255-8. PubMed ID: 27049945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
    Wise DR; Ward PS; Shay JE; Cross JR; Gruber JJ; Sachdeva UM; Platt JM; DeMatteo RG; Simon MC; Thompson CB
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19611-6. PubMed ID: 22106302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular signals converge at the NOX2-SHP-2 axis to induce reductive carboxylation in cancer cells.
    Zhang R; Chen D; Fan H; Wu R; Tu J; Zhang FQ; Wang M; Zheng H; Qu CK; Elf SE; Faubert B; He YY; Bissonnette MB; Gao X; DeBerardinis RJ; Chen J
    Cell Chem Biol; 2022 Jul; 29(7):1200-1208.e6. PubMed ID: 35429459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FASN deficiency induces a cytosol-to-mitochondria citrate flux to mitigate detachment-induced oxidative stress.
    Dai W; Wang Z; Wang G; Wang QA; DeBerardinis R; Jiang L
    Cell Rep; 2023 Aug; 42(8):112971. PubMed ID: 37578864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects.
    Mullen AR; Hu Z; Shi X; Jiang L; Boroughs LK; Kovacs Z; Boriack R; Rakheja D; Sullivan LB; Linehan WM; Chandel NS; DeBerardinis RJ
    Cell Rep; 2014 Jun; 7(5):1679-1690. PubMed ID: 24857658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.
    Grassian AR; Parker SJ; Davidson SM; Divakaruni AS; Green CR; Zhang X; Slocum KL; Pu M; Lin F; Vickers C; Joud-Caldwell C; Chung F; Yin H; Handly ED; Straub C; Growney JD; Vander Heiden MG; Murphy AN; Pagliarini R; Metallo CM
    Cancer Res; 2014 Jun; 74(12):3317-31. PubMed ID: 24755473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citrate and the citrate cycle in the regulation of energy metabolism.
    Atkinson DE
    Biochem Soc Symp; 1968; 27():23-40. PubMed ID: 5759705
    [No Abstract]   [Full Text] [Related]  

  • 9. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.
    Filipp FV; Scott DA; Ronai ZA; Osterman AL; Smith JW
    Pigment Cell Melanoma Res; 2012 May; 25(3):375-83. PubMed ID: 22360810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A comparative study of the isocitrate dehydrogenases of Chlorobium limicola forma Chlorobium thiosulfatophilum and Rhodopseudomonas palustris].
    Lebedeva NV; Malinina NV; Ivanovskiĭ RN
    Mikrobiologiia; 2002; 71(6):762-7. PubMed ID: 12526196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate.
    Holms WH; Bennett PM
    J Gen Microbiol; 1971 Jan; 65(1):57-68. PubMed ID: 4932752
    [No Abstract]   [Full Text] [Related]  

  • 13. Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle.
    Alves TC; Pongratz RL; Zhao X; Yarborough O; Sereda S; Shirihai O; Cline GW; Mason G; Kibbey RG
    Cell Metab; 2015 Nov; 22(5):936-47. PubMed ID: 26411341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzyme activity of citrate, glyoxylate and pentosephosphate cycles during synthesis of citric acids by Candida lipolytica].
    Glazunova LM; Finogenova TV
    Mikrobiologiia; 1976; 45():444-9. PubMed ID: 1004246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Citrate oxidation in the cytoplasmic fraction of rat brain.
    Gromek A; Rafalowska U
    J Neurochem; 1972 Nov; 19(11):2687-95. PubMed ID: 4404456
    [No Abstract]   [Full Text] [Related]  

  • 16. Certain aspects of carbohydrate & lipid metabolism in scorbutic rhesus monkeys.
    Banerjee S; Kawishwar WK
    Indian J Biochem; 1964 Sep; 1(3):136-9. PubMed ID: 4243411
    [No Abstract]   [Full Text] [Related]  

  • 17. The Krebs in glomeruli of normal rat kidney and in compensatory hypertrophy.
    Nowinski WW; Pigoń A
    J Histochem Cytochem; 1967 Jan; 15(1):32-7. PubMed ID: 4166299
    [No Abstract]   [Full Text] [Related]  

  • 18. Citrate metabolism in liver of rats treated with glyoxylate and oxaloacetate.
    Adinolfi A; Speranza ML; Guarriera-Bobyleva V; Ruffo A
    Ital J Biochem; 1973; 22(2):92-104. PubMed ID: 4771417
    [No Abstract]   [Full Text] [Related]  

  • 19. Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells.
    Lee WD; Mukha D; Aizenshtein E; Shlomi T
    Nat Commun; 2019 Mar; 10(1):1351. PubMed ID: 30903027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metabolic activity of Krebs cycle in the liver during experimental burns].
    Slobodin VB; Kabenina NM
    Vopr Med Khim; 1982; 28(5):93-6. PubMed ID: 7179841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.