These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27125679)

  • 1. Numerical investigation of molecular nano-array in potential-energy profile for a single dsDNA.
    Alishahi M; Kamali R; Abouali O
    Eur Phys J E Soft Matter; 2016 Apr; 39(4):50. PubMed ID: 27125679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous study of molecular dynamics of a single dsDNA confined in a nanochannel: Introduction of a critical mobility behaviour.
    Alishahi M; Kamali R; Abouali O
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):92. PubMed ID: 26314258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules.
    Li ZR; Liu GR; Chen YZ; Wang JS; Bow H; Cheng Y; Han J
    Electrophoresis; 2008 Jan; 29(2):329-39. PubMed ID: 18203240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach.
    Borhan G; Sahihi M
    J Mol Graph Model; 2024 Dec; 133():108882. PubMed ID: 39405984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Confined in a Nanodroplet: A Molecular Dynamics Study.
    Si D; Xu Z; Nan N; Hu G
    J Phys Chem B; 2018 Sep; 122(38):8812-8818. PubMed ID: 30180585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores.
    Li ZR; Liu GR; Han J; Cheng Y; Chen YZ; Wang JS; Hadjiconstantinou NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041911. PubMed ID: 19905346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput DNA separation in nanofilter arrays.
    Choi S; Kim JM; Ahn KH; Lee SJ
    Electrophoresis; 2014 Aug; 35(15):2068-77. PubMed ID: 24930709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of an empirical function for the mobility of DNA fragments in sieving matrices.
    Slater GW
    Electrophoresis; 2002 May; 23(10):1410-6. PubMed ID: 12116150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation behavior of short single- and double-stranded DNA in 1 micron and 100 nm glass channels.
    Russell AJ; Del Bonis-O'Donnell JT; Wynne TM; Napoli MT; Pennathur S
    Electrophoresis; 2014 Feb; 35(2-3):412-8. PubMed ID: 23893737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confinement effects on electromigration of long DNA molecules in an ordered cavity array.
    Zeng Y; Harrison DJ
    Electrophoresis; 2006 Oct; 27(19):3747-52. PubMed ID: 16960918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowing down DNA translocation through solid-state nanopores by pressure.
    Zhang H; Zhao Q; Tang Z; Liu S; Li Q; Fan Z; Yang F; You L; Li X; Zhang J; Yu D
    Small; 2013 Dec; 9(24):4112-7. PubMed ID: 23828716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional reduction of duplex DNA under confinement to nanofluidic slits.
    Vargas-Lara F; Stavis SM; Strychalski EA; Nablo BJ; Geist J; Starr FW; Douglas JF
    Soft Matter; 2015 Nov; 11(42):8273-84. PubMed ID: 26353028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of guanosine gels into sieving matrices for length- and sequence-based separation of DNA in capillary electrophoresis.
    Dong Y; McGown LB
    Electrophoresis; 2011 May; 32(10):1209-16. PubMed ID: 21544840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement.
    Wunsch BH; Kim SC; Gifford SM; Astier Y; Wang C; Bruce RL; Patel JV; Duch EA; Dawes S; Stolovitzky G; Smith JT
    Lab Chip; 2019 Apr; 19(9):1567-1578. PubMed ID: 30920559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis between sieving and reptation: an investigation of the role of shape fluctuations in electrophoresis.
    Völkel AR; Noolandi J
    Electrophoresis; 1995 Nov; 16(11):2086-93. PubMed ID: 8748739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the possibility of geometrical electrophoresis.
    Ueda M; Hayama T; Takamura Y; Horiike Y; Baba Y
    Electrophoresis; 2002 Aug; 23(16):2635-41. PubMed ID: 12210167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of DNA conformation in electrolytic nanodroplets.
    Si DQ; Liu XY; Wu JB; Hu GH
    Phys Chem Chem Phys; 2022 Mar; 24(10):6002-6010. PubMed ID: 35199810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
    Chen Z; Dorfman KD
    Electrophoresis; 2014 Feb; 35(2-3):405-11. PubMed ID: 23868490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2002 Aug; 23(16):2794-803. PubMed ID: 12210184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single pore translocation of folded, double-stranded, and tetra-stranded DNA through channel of bacteriophage phi29 DNA packaging motor.
    Haque F; Wang S; Stites C; Chen L; Wang C; Guo P
    Biomaterials; 2015; 53():744-52. PubMed ID: 25890769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.