BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 27125761)

  • 1. Oximes in organophosphate poisoning: 60 years of hope and despair.
    Worek F; Thiermann H; Wille T
    Chem Biol Interact; 2016 Nov; 259(Pt B):93-98. PubMed ID: 27125761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The value of novel oximes for treatment of poisoning by organophosphorus compounds.
    Worek F; Thiermann H
    Pharmacol Ther; 2013 Aug; 139(2):249-59. PubMed ID: 23603539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico and in vitro evaluation of two novel oximes (K378 and K727) in comparison to K-27 and pralidoxime against paraoxon-ethyl intoxication.
    Arshad M; Fatmi MQ; Musilek K; Hussain A; Kuca K; Petroianu G; Kalasz H; Nurulain SM
    Toxicol Mech Methods; 2018 Jan; 28(1):62-68. PubMed ID: 28722512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis.
    Worek F; Eyer P; Aurbek N; Szinicz L; Thiermann H
    Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):226-34. PubMed ID: 17112559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides.
    Wilhelm CM; Snider TH; Babin MC; Jett DA; Platoff GE; Yeung DT
    Toxicol Appl Pharmacol; 2014 Dec; 281(3):254-65. PubMed ID: 25448441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations in current acetylcholinesterase structure-based design of oxime antidotes for organophosphate poisoning.
    Kovalevsky A; Blumenthal DK; Cheng X; Taylor P; Radić Z
    Ann N Y Acad Sci; 2016 Aug; 1378(1):41-49. PubMed ID: 27371941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques.
    Rosenberg YJ; Wang J; Ooms T; Rajendran N; Mao L; Jiang X; Lees J; Urban L; Momper JD; Sepulveda Y; Shyong YJ; Taylor P
    Toxicol Lett; 2018 Sep; 293():229-234. PubMed ID: 29129799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A; Worek F; Szinicz L; Thiermann H
    Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents.
    Cadieux CL; Wang H; Zhang Y; Koenig JA; Shih TM; McDonough J; Koh J; Cerasoli D
    Chem Biol Interact; 2016 Nov; 259(Pt B):133-141. PubMed ID: 27062893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis.
    Aurbek N; Thiermann H; Eyer F; Eyer P; Worek F
    Toxicology; 2009 May; 259(3):133-9. PubMed ID: 19428953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural requirements for effective oximes--evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes.
    Worek F; Wille T; Koller M; Thiermann H
    Chem Biol Interact; 2013 Mar; 203(1):125-8. PubMed ID: 22827894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase.
    Scheffel C; Thiermann H; Worek F
    Toxicol Lett; 2015 Feb; 232(3):557-65. PubMed ID: 25522658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: a kinetic study.
    Sharma R; Gupta B; Acharya J; Kaushik MP; Ghosh KK
    Toxicology; 2014 Feb; 316():1-8. PubMed ID: 24345352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?
    Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F
    Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro.
    Horn G; de Koning MC; van Grol M; Thiermann H; Worek F
    Toxicol Lett; 2018 Dec; 299():218-225. PubMed ID: 30312685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning.
    Antonijevic B; Stojiljkovic MP
    Clin Med Res; 2007 Mar; 5(1):71-82. PubMed ID: 17456837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organophosphorus compounds and oximes: a critical review.
    Worek F; Thiermann H; Wille T
    Arch Toxicol; 2020 Jul; 94(7):2275-2292. PubMed ID: 32506210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach.
    Worek F; Aurbek N; Wille T; Eyer P; Thiermann H
    J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose.
    Shih TM; Skovira JW; O'Donnell JC; McDonough JH
    Toxicol Mech Methods; 2009 Sep; 19(6-7):386-400. PubMed ID: 19778239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing of antidotes for organophosphorus compounds: experimental procedures and clinical reality.
    Eyer P; Szinicz L; Thiermann H; Worek F; Zilker T
    Toxicology; 2007 Apr; 233(1-3):108-19. PubMed ID: 17010492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.