BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27125815)

  • 1. The Evaluation of Magnesium Chloride within a Polyethylene Glycol Formulation in a Porcine Model of Acute Spinal Cord Injury.
    Streijger F; Lee JH; Manouchehri N; Okon EB; Tigchelaar S; Anderson LM; Dekaban GA; Rudko DA; Menon RS; Iaci JF; Button DC; Vecchione AM; Konovalov A; Sarmiere PD; Ung C; Caggiano AO; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2202-2216. PubMed ID: 27125815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AC105 Increases Extracellular Magnesium Delivery and Reduces Excitotoxic Glutamate Exposure within Injured Spinal Cords in Rats.
    Huang Z; Filipovic Z; Mp N; Ung C; Troy EL; Colburn RW; Iaci JF; Hackett C; Button DC; Caggiano AO; Parry TJ
    J Neurotrauma; 2017 Feb; 34(3):685-694. PubMed ID: 27503053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization.
    Kwon BK; Roy J; Lee JH; Okon E; Zhang H; Marx JC; Kindy MS
    J Neurotrauma; 2009 Aug; 26(8):1379-93. PubMed ID: 19317592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat.
    Ditor DS; John SM; Roy J; Marx JC; Kittmer C; Weaver LC
    J Neurosci Res; 2007 May; 85(7):1458-67. PubMed ID: 17410603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel porcine model of traumatic thoracic spinal cord injury.
    Lee JH; Jones CF; Okon EB; Anderson L; Tigchelaar S; Kooner P; Godbey T; Chua B; Gray G; Hildebrandt R; Cripton P; Tetzlaff W; Kwon BK
    J Neurotrauma; 2013 Feb; 30(3):142-59. PubMed ID: 23316955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dichotomous Locomotor Recoveries Are Predicted by Acute Changes in Segmental Blood Flow after Thoracic Spinal Contusion Injuries in Pigs.
    Santamaria AJ; Benavides FD; Padgett KR; Guada LG; Nunez-Gomez Y; Solano JP; Guest JD
    J Neurotrauma; 2019 May; 36(9):1399-1415. PubMed ID: 30284945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury.
    Ahmed RU; Medina-Aguinaga D; Adams S; Knibbe CA; Morgan M; Gibson D; Kim JW; Sharma M; Chopra M; Davison S; Sherwood LC; Negahdar MJ; Bert R; Ugiliweneza B; Hubscher C; Budde MD; Xu J; Boakye M
    Ann Clin Transl Neurol; 2023 Sep; 10(9):1647-1661. PubMed ID: 37501362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of the Acutely Injured Spinal Cord to Vibration that Simulates Transport in Helicopters or Mine-Resistant Ambush-Protected Vehicles.
    Streijger F; Lee JH; Manouchehri N; Melnyk AD; Chak J; Tigchelaar S; So K; Okon EB; Jiang S; Kinsler R; Barazanji K; Cripton PA; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2217-2226. PubMed ID: 27214588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model.
    Streijger F; Kim KT; So K; Manouchehri N; Shortt K; Okon EB; Morrison C; Fong A; Gupta R; Allard Brown A; Tigchelaar S; Sun J; Liu E; Keung M; Daly CD; Cripton PA; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2021 Nov; 38(21):2937-2955. PubMed ID: 34011164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotine attenuates morphological deficits in a contusion model of spinal cord injury.
    Ravikumar R; Fugaccia I; Scheff SW; Geddes JW; Srinivasan C; Toborek M
    J Neurotrauma; 2005 Feb; 22(2):240-51. PubMed ID: 15716630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury.
    Kim KT; Streijger F; So K; Manouchehri N; Shortt K; Okon EB; Tigchelaar S; Fong A; Morrison C; Keung M; Sun J; Liu E; Cripton PA; Kwon BK
    J Neurotrauma; 2019 Nov; 36(21):3005-3017. PubMed ID: 30816064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury.
    Vasconcelos NL; Gomes ED; Oliveira EP; Silva CJ; Lima R; Sousa N; Salgado AJ; Silva NA
    Spine J; 2016 Aug; 16(8):1015-24. PubMed ID: 27109831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.
    Baptiste DC; Austin JW; Zhao W; Nahirny A; Sugita S; Fehlings MG
    J Neuropathol Exp Neurol; 2009 Jun; 68(6):661-76. PubMed ID: 19458542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.
    Jirjis MB; Valdez C; Vedantam A; Schmit BD; Kurpad SN
    J Neurosurg Spine; 2017 Feb; 26(2):243-251. PubMed ID: 27689421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of IL-6 signaling by MR16-1 inhibits reduction of docosahexaenoic acid-containing phosphatidylcholine levels in a mouse model of spinal cord injury.
    Arima H; Hanada M; Hayasaka T; Masaki N; Omura T; Xu D; Hasegawa T; Togawa D; Yamato Y; Kobayashi S; Yasuda T; Matsuyama Y; Setou M
    Neuroscience; 2014 Jun; 269():1-10. PubMed ID: 24657456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury.
    Lee JH; Roy J; Sohn HM; Cheong M; Liu J; Stammers AT; Tetzlaff W; Kwon BK
    Spine (Phila Pa 1976); 2010 Nov; 35(23):2041-8. PubMed ID: 20938394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial Diffusion Tensor Imaging In Vivo Predicts Long-Term Functional Recovery and Histopathology in Rats following Different Severities of Spinal Cord Injury.
    Patel SP; Smith TD; VanRooyen JL; Powell D; Cox DH; Sullivan PG; Rabchevsky AG
    J Neurotrauma; 2016 May; 33(10):917-28. PubMed ID: 26650623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed treatment of spinal cord injury with erythropoietin or darbepoetin--a lack of neuroprotective efficacy in a contusion model of cord injury.
    Mann C; Lee JH; Liu J; Stammers AM; Sohn HM; Tetzlaff W; Kwon BK
    Exp Neurol; 2008 May; 211(1):34-40. PubMed ID: 18313052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.