These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27125856)

  • 1. The shapes of bird beaks are highly controlled by nondietary factors.
    Bright JA; Marugán-Lobón J; Cobb SN; Rayfield EJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5352-7. PubMed ID: 27125856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bill shape variation in selected species in birds of prey.
    Çakar B; Bulut EÇ; Kahvecioglu O; Günay E; Ruzhanova-Gospodinova IS; Szara T
    Anat Histol Embryol; 2024 Jul; 53(4):e13085. PubMed ID: 38965917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The consequences of craniofacial integration for the adaptive radiations of Darwin's finches and Hawaiian honeycreepers.
    Navalón G; Marugán-Lobón J; Bright JA; Cooney CR; Rayfield EJ
    Nat Ecol Evol; 2020 Feb; 4(2):270-278. PubMed ID: 32015429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mass explains prey size selection better than beak, gizzard and body size in a benthivorous duck species.
    Laursen K; Møller AP
    PLoS One; 2021; 16(3):e0248615. PubMed ID: 33784342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape similarities and differences in the skulls of scavenging raptors.
    Guangdi SI; Dong Y; Ma Y; Zhang Z
    Zoolog Sci; 2015 Apr; 32(2):171-7. PubMed ID: 25826066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds.
    Navalón G; Bright JA; Marugán-Lobón J; Rayfield EJ
    Evolution; 2019 Mar; 73(3):422-435. PubMed ID: 30537045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes).
    Bright JA; Marugán-Lobón J; Rayfield EJ; Cobb SN
    BMC Evol Biol; 2019 May; 19(1):104. PubMed ID: 31101003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry.
    Tsang LR; Wilson LAB; Ledogar J; Wroe S; Attard M; Sansalone G
    Sci Rep; 2019 May; 9(1):7076. PubMed ID: 31068662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allometry and integration do not strongly constrain beak shape evolution in large-billed (
    Yamasaki T; Aoki S; Tokita M
    Ecol Evol; 2018 Oct; 8(20):10057-10066. PubMed ID: 30397447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique.
    Fowler DW; Freedman EA; Scannella JB
    PLoS One; 2009 Nov; 4(11):e7999. PubMed ID: 19946365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs.
    Mallarino R; Campàs O; Fritz JA; Burns KJ; Weeks OG; Brenner MP; Abzhanov A
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16222-7. PubMed ID: 22988109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
    Abzhanov A; Kuo WP; Hartmann C; Grant BR; Grant PR; Tabin CJ
    Nature; 2006 Aug; 442(7102):563-7. PubMed ID: 16885984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution.
    Friedman NR; Miller ET; Ball JR; Kasuga H; Remeš V; Economo EP
    Proc Biol Sci; 2019 Dec; 286(1917):20192474. PubMed ID: 31847778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two developmental modules establish 3D beak-shape variation in Darwin's finches.
    Mallarino R; Grant PR; Grant BR; Herrel A; Kuo WP; Abzhanov A
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):4057-62. PubMed ID: 21368127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric morphometrics casts light on phylogenetic relevance of cephalopod beak morphological.
    Wang C; Chen X; Fang Z
    J Morphol; 2024 Apr; 285(4):e21691. PubMed ID: 38555512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the beak: Brain size and allometry in avian craniofacial evolution.
    Marugán-Lobón J; Nebreda SM; Navalón G; Benson RBJ
    J Anat; 2022 Feb; 240(2):197-209. PubMed ID: 34558058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution.
    Wu P; Jiang TX; Shen JY; Widelitz RB; Chuong CM
    Dev Dyn; 2006 May; 235(5):1400-12. PubMed ID: 16586442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beak morphometry and morphogenesis across avian radiations.
    Mosleh S; Choi GPT; Musser GM; James HF; Abzhanov A; Mahadevan L
    Proc Biol Sci; 2023 Sep; 290(2007):20230420. PubMed ID: 37752837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.
    Friedman NR; Harmáčková L; Economo EP; Remeš V
    Evolution; 2017 Aug; 71(8):2120-2129. PubMed ID: 28700095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digest: Evolution of shape and leverage of bird beaks reflects feeding ecology, but not as strongly as expected.
    Van Wassenbergh S; Baeckens S
    Evolution; 2019 Mar; 73(3):621-622. PubMed ID: 30667048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.