BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27125901)

  • 1. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber.
    Hodge JG; Quint C
    J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
    Baker BM; Gee AO; Metter RB; Nathan AS; Marklein RA; Burdick JA; Mauck RL
    Biomaterials; 2008 May; 29(15):2348-58. PubMed ID: 18313138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles.
    Hodge J; Quint C
    J Biomed Mater Res A; 2019 Sep; 107(9):1954-1964. PubMed ID: 31033146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication.
    Aghajanpoor M; Hashemi-Najafabadi S; Baghaban-Eslaminejad M; Bagheri F; Mohammad Mousavi S; Azam Sayyahpour F
    J Biomed Mater Res A; 2017 Jul; 105(7):1887-1899. PubMed ID: 28256792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K; Xu M; Zhu M; Su H; Wang H; Kong D; Wang L
    J Biomed Mater Res A; 2013 Dec; 101(12):3474-81. PubMed ID: 23606405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications.
    Milleret V; Simona B; Neuenschwander P; Hall H
    Eur Cell Mater; 2011 Mar; 21():286-303. PubMed ID: 21432783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preparation and performance of a new polyurethane vascular prosthesis.
    He W; Hu Z; Xu A; Liu R; Yin H; Wang J; Wang S
    Cell Biochem Biophys; 2013 Jul; 66(3):855-66. PubMed ID: 23456453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of electrospun cardiac patches made with sacrificial particles and polyurethane-polycaprolactone blends.
    Beck EC; Jarrell DK; Lyons AC; Vanderslice EJ; VeDepo MC; Jacot JG
    J Biomed Mater Res A; 2021 Nov; 109(11):2154-2163. PubMed ID: 33876870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.
    Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL
    Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications.
    Khodadoust M; Mohebbi-Kalhori D; Jirofti N
    Cardiovasc Eng Technol; 2018 Mar; 9(1):73-83. PubMed ID: 29196952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine.
    Liu Y; Nelson T; Chakroff J; Cromeens B; Johnson J; Lannutti J; Besner GE
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):750-760. PubMed ID: 30270503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels.
    Strobel HA; Calamari EL; Beliveau A; Jain A; Rolle MW
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):817-826. PubMed ID: 28383795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.
    Sharifpoor S; Simmons CA; Labow RS; Santerre JP
    Acta Biomater; 2010 Nov; 6(11):4218-28. PubMed ID: 20601230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.
    Wang K; Zhu M; Li T; Zheng W; Li L; Xu M; Zhao Q; Kong D; Wang L
    J Biomed Nanotechnol; 2014 Aug; 10(8):1588-98. PubMed ID: 25016658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the pore size of electrospun scaffolds.
    Rnjak-Kovacina J; Weiss AS
    Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers.
    Jirofti N; Mohebbi-Kalhori D; Samimi A; Hadjizadeh A; Kazemzadeh GH
    Biomed Mater; 2018 Aug; 13(5):055014. PubMed ID: 30026407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study.
    Jung SY; Lee SJ; Kim HY; Park HS; Wang Z; Kim HJ; Yoo JJ; Chung SM; Kim HS
    Biofabrication; 2016 Oct; 8(4):045015. PubMed ID: 27788126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold.
    Sattary M; Rafienia M; Khorasani MT; Salehi H
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):933-950. PubMed ID: 30199600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.