BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27125980)

  • 41. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential.
    Knezevic J; Pfefferle AD; Petrovic I; Greene SB; Perou CM; Rosen JM
    Oncogene; 2015 Dec; 34(49):5997-6006. PubMed ID: 25746005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells.
    Yu Y; Nangia-Makker P; Farhana L; G Rajendra S; Levi E; Majumdar AP
    Mol Cancer; 2015 May; 14():98. PubMed ID: 25928322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanotransduction in cancer stem cells.
    Hao J; Zhang Y; Ye R; Zheng Y; Zhao Z; Li J
    Cell Biol Int; 2013 Sep; 37(9):888-91. PubMed ID: 23576457
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lung cancer stem cells and implications for future therapeutics.
    Wang J; Li ZH; White J; Zhang LB
    Cell Biochem Biophys; 2014 Jul; 69(3):389-98. PubMed ID: 24549856
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cancer stem cell-driven efficacy of trastuzumab (Herceptin): towards a reclassification of clinically HER2-positive breast carcinomas.
    Martin-Castillo B; Lopez-Bonet E; Cuyàs E; Viñas G; Pernas S; Dorca J; Menendez JA
    Oncotarget; 2015 Oct; 6(32):32317-38. PubMed ID: 26474458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impact of adhesion on cellular invasion processes in cancer and development.
    Painter KJ; Armstrong NJ; Sherratt JA
    J Theor Biol; 2010 Jun; 264(3):1057-67. PubMed ID: 20346958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TGFβ and matrix-regulated epithelial to mesenchymal transition.
    Moustakas A; Heldin P
    Biochim Biophys Acta; 2014 Aug; 1840(8):2621-34. PubMed ID: 24561266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prostaglandin E2 Promotes Colorectal Cancer Stem Cell Expansion and Metastasis in Mice.
    Wang D; Fu L; Sun H; Guo L; DuBois RN
    Gastroenterology; 2015 Dec; 149(7):1884-1895.e4. PubMed ID: 26261008
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway.
    Liu T; Hu K; Zhao Z; Chen G; Ou X; Zhang H; Zhang X; Wei X; Wang D; Cui M; Liu C
    Oncotarget; 2015 Dec; 6(39):41638-49. PubMed ID: 26497855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuropilin-1 is expressed by breast cancer stem-like cells and is linked to NF-κB activation and tumor sphere formation.
    Glinka Y; Mohammed N; Subramaniam V; Jothy S; Prud'homme GJ
    Biochem Biophys Res Commun; 2012 Sep; 425(4):775-80. PubMed ID: 22885184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanomedicine-mediated cancer stem cell therapy.
    Shen S; Xia JX; Wang J
    Biomaterials; 2016 Jan; 74():1-18. PubMed ID: 26433488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance.
    Ryoo IG; Lee SH; Kwak MK
    Oxid Med Cell Longev; 2016; 2016():2428153. PubMed ID: 26682001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth suppression of human breast carcinoma stem cells by lipid peroxidation product 4-hydroxy-2-nonenal and hydroxyl radical-modified collagen.
    Cipak A; Mrakovcic L; Ciz M; Lojek A; Mihaylova B; Goshev I; Jaganjac M; Cindric M; Sitic S; Margaritoni M; Waeg G; Balic M; Zarkovic N
    Acta Biochim Pol; 2010; 57(2):165-71. PubMed ID: 20559572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Role of the Extracellular Matrix in Cancer Stemness.
    Nallanthighal S; Heiserman JP; Cheon DJ
    Front Cell Dev Biol; 2019; 7():86. PubMed ID: 31334229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.
    Monteagudo Á; Santos J
    PLoS One; 2015; 10(7):e0132306. PubMed ID: 26176702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Are the Effects of Independent Biophysical Factors Linearly Additive? A 3D Tumor Migration Model.
    Li A; Sun M; Spill F; Sun R; Zaman MH
    Biophys J; 2019 Nov; 117(9):1702-1713. PubMed ID: 31630809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states.
    Jokela TA; LaBarge MA
    Curr Stem Cell Rep; 2021 Mar; 7():39-47. PubMed ID: 33777660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor Tissue Analogs for the Assessment of Radioresistance in Cancer Stem Cells.
    Upreti M
    Methods Mol Biol; 2018; 1692():117-128. PubMed ID: 28986892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineered ECM models: Opportunities to advance understanding of tumor heterogeneity.
    Shimpi AA; Fischbach C
    Curr Opin Cell Biol; 2021 Oct; 72():1-9. PubMed ID: 33991804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability.
    Krause M; Wolf K
    Cell Adh Migr; 2015; 9(5):357-66. PubMed ID: 26301444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.