These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 27126006)
1. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition. Li H; Liao H; Bao C; Xiao Y; Wang Q AAPS PharmSciTech; 2017 Feb; 18(2):529-538. PubMed ID: 27126006 [TBL] [Abstract][Full Text] [Related]
2. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
3. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA. Lin L; Gao H; Dong Y J Mater Sci Mater Med; 2015 Jan; 26(1):5327. PubMed ID: 25577209 [TBL] [Abstract][Full Text] [Related]
4. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
5. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
6. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
7. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. Boukari Y; Scurr DJ; Qutachi O; Morris AP; Doughty SW; Rahman CV; Billa N J Biomater Sci Polym Ed; 2015; 26(12):796-811. PubMed ID: 26065672 [TBL] [Abstract][Full Text] [Related]
8. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730 [TBL] [Abstract][Full Text] [Related]
9. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Yoon SJ; Park KS; Kim MS; Rhee JM; Khang G; Lee HB Tissue Eng; 2007 May; 13(5):1125-33. PubMed ID: 17394384 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres. Song K; Liu Y; Macedo HM; Jiang L; Li C; Mei G; Liu T Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1506-13. PubMed ID: 23827602 [TBL] [Abstract][Full Text] [Related]
11. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772 [TBL] [Abstract][Full Text] [Related]
12. Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. Thi Hiep N; Chan Khon H; Dai Hai N; Byong-Taek L; Van Toi V; Thanh Hung L J Biomater Sci Polym Ed; 2017 Jun; 28(9):864-878. PubMed ID: 28345449 [TBL] [Abstract][Full Text] [Related]
13. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703 [TBL] [Abstract][Full Text] [Related]
14. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation. Hassan AH; Hosny KM; Murshid ZA; Alhadlaq A; Alyamani A; Naguib G Drug Des Devel Ther; 2015; 9():3599-606. PubMed ID: 26203226 [TBL] [Abstract][Full Text] [Related]
15. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
16. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Fu YC; Nie H; Ho ML; Wang CK; Wang CH Biotechnol Bioeng; 2008 Mar; 99(4):996-1006. PubMed ID: 17879301 [TBL] [Abstract][Full Text] [Related]
17. Preparation of ONO-1301-loaded poly(lactide-co-glycolide) microspheres and their effect on nerve conduction velocity. Hazekawa M; Sakai Y; Yoshida M; Haraguchi T; Morisaki T; Uchida T J Pharm Pharmacol; 2011 Mar; 63(3):362-8. PubMed ID: 21749383 [TBL] [Abstract][Full Text] [Related]
18. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
19. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
20. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]