These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27126117)

  • 1. Hydrogen-bond-reversal symmetry and its violation in ice nanotubes.
    Kirov MV
    Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):395-405. PubMed ID: 27126117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden asymmetry of ice.
    Kirov MV
    J Phys Chem B; 2014 Nov; 118(47):13341-8. PubMed ID: 24905908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water.
    Kühne TD; Khaliullin RZ
    J Am Chem Soc; 2014 Mar; 136(9):3395-9. PubMed ID: 24521433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton disorder and elasticity of hexagonal ice and gas hydrates.
    Gudkovskikh SV; Kirov MV
    J Mol Model; 2019 Jan; 25(2):32. PubMed ID: 30617625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of hydrogen bond flips in small water polyhedra applied to concerted proton tunneling.
    Kirov MV
    Phys Chem Chem Phys; 2016 Oct; 18(39):27351-27357. PubMed ID: 27711574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of proton configurations in water polyhedra and hydrate frameworks: topology vs. geometry.
    Gudkovskikh SV; Kirov MV
    Phys Chem Chem Phys; 2019 Nov; 21(44):24709-24715. PubMed ID: 31675032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bond networks in finite ice nanotubes.
    Tokmachev AM; Dronskowski R
    J Comput Chem; 2011 Jan; 32(1):99-105. PubMed ID: 20602444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bond ordering in ice V and the transition to ice XIII.
    Knight C; Singer SJ
    J Chem Phys; 2008 Oct; 129(16):164513. PubMed ID: 19045290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configurational Entropy in Ice Nanosystems: Tools for Structure Generation and Screening.
    Parkkinen P; Riikonen S; Halonen L
    J Chem Theory Comput; 2014 Mar; 10(3):1256-64. PubMed ID: 26580194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water proton configurations in structures I, II, and H clathrate hydrate unit cells.
    Takeuchi F; Hiratsuka M; Ohmura R; Alavi S; Sum AK; Yasuoka K
    J Chem Phys; 2013 Mar; 138(12):124504. PubMed ID: 23556733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray absorption spectra of hexagonal ice and liquid water by all-electron Gaussian and augmented plane wave calculations.
    Iannuzzi M
    J Chem Phys; 2008 May; 128(20):204506. PubMed ID: 18513031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First principles molecular dynamics study of filled ice hydrogen hydrate.
    Zhang J; Kuo JL; Iitaka T
    J Chem Phys; 2012 Aug; 137(8):084505. PubMed ID: 22938248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects.
    Drechsel-Grau C; Marx D
    Phys Chem Chem Phys; 2017 Jan; 19(4):2623-2635. PubMed ID: 27819088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric properties of water inside single-walled carbon nanotubes.
    Mikami F; Matsuda K; Kataura H; Maniwa Y
    ACS Nano; 2009 May; 3(5):1279-87. PubMed ID: 19385604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperativity in ordinary ice and breaking of hydrogen bonds.
    Ruckenstein E; Shulgin IL; Shulgin LI
    J Phys Chem B; 2007 Jun; 111(25):7114-21. PubMed ID: 17550284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of hydrogen bond network rearrangements in liquid water.
    Smith JD; Cappa CD; Wilson KR; Messer BM; Cohen RC; Saykally RJ
    Science; 2004 Oct; 306(5697):851-3. PubMed ID: 15514152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water.
    Wernet P; Testemale D; Hazemann JL; Argoud R; Glatzel P; Pettersson LG; Nilsson A; Bergmann U
    J Chem Phys; 2005 Oct; 123(15):154503. PubMed ID: 16252958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.