BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27126167)

  • 1. Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier.
    Snigdha K; Singh BK; Mehta AS; Tewari RP; Dutta PK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1639-1646. PubMed ID: 27126167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release behavior of salicylic acid in supramolecular hydrogels formed by l-phenylalanine derivatives as hydrogelator.
    Cao S; Fu X; Wang N; Wang H; Yang Y
    Int J Pharm; 2008 Jun; 357(1-2):95-9. PubMed ID: 18329200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels.
    Abraham BL; Toriki ES; Tucker NJ; Nilsson BL
    J Mater Chem B; 2020 Aug; 8(30):6366-6377. PubMed ID: 32596699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation.
    Singh V; Snigdha K; Singh C; Sinha N; Thakur AK
    Soft Matter; 2015 Jul; 11(26):5353-64. PubMed ID: 26059479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties.
    Kamoun EA; Fahmy A; Taha TH; El-Fakharany EM; Makram M; Soliman HMA; Shehata H
    Int J Biol Macromol; 2018 Jan; 106():158-167. PubMed ID: 28780413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics.
    Sutton S; Campbell NL; Cooper AI; Kirkland M; Frith WJ; Adams DJ
    Langmuir; 2009 Sep; 25(17):10285-91. PubMed ID: 19499945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel salicylic acid-based chemically crosslinked pH-sensitive hydrogels as potential drug delivery systems.
    Demirdirek B; Uhrich KE
    Int J Pharm; 2017 Aug; 528(1-2):406-415. PubMed ID: 28559214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases.
    Gahane AY; Ranjan P; Singh V; Sharma RK; Sinha N; Sharma M; Chaudhry R; Thakur AK
    Soft Matter; 2018 Mar; 14(12):2234-2244. PubMed ID: 29517792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation instructed steroidal prodrug supramolecular hydrogel.
    Zhou Y; Lei L; Zhang Z; Zhang R; Song Q; Li X
    J Colloid Interface Sci; 2018 Oct; 528():10-17. PubMed ID: 29803956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels.
    Niamlang S; Sirivat A
    Int J Pharm; 2009 Apr; 371(1-2):126-33. PubMed ID: 19162150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable biopolymer based hydrogels for drug delivery applications.
    Atta S; Khaliq S; Islam A; Javeria I; Jamil T; Athar MM; Shafiq MI; Ghaffar A
    Int J Biol Macromol; 2015 Sep; 80():240-5. PubMed ID: 26118484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems.
    Demirdirek B; Uhrich KE
    J Drug Target; 2015; 23(7-8):716-24. PubMed ID: 26453167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery.
    Zhang Z; Yu J; Zhou Y; Zhang R; Song Q; Lei L; Li X
    Colloids Surf B Biointerfaces; 2018 Apr; 164():436-443. PubMed ID: 29438842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate.
    Jabeen S; Islam A; Ghaffar A; Gull N; Hameed A; Bashir A; Jamil T; Hussain T
    Int J Biol Macromol; 2017 Apr; 97():218-227. PubMed ID: 28064050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin.
    Das D; Pal S
    Int J Biol Macromol; 2015 Jan; 72():171-8. PubMed ID: 25138539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications.
    Diaferia C; Morelli G; Accardo A
    J Mater Chem B; 2019 Sep; 7(34):5142-5155. PubMed ID: 31380554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly.
    Wang L; Shi X; Wu Y; Zhang J; Zhu Y; Wang J
    Soft Matter; 2018 Jan; 14(4):566-573. PubMed ID: 29334109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.