These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27126171)
1. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Shavandi A; Bekhit AE; Sun Z; Ali MA Int J Biol Macromol; 2016 Dec; 93(Pt B):1446-1456. PubMed ID: 27126171 [TBL] [Abstract][Full Text] [Related]
2. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z Int J Biol Macromol; 2015 Sep; 80():445-54. PubMed ID: 26187191 [TBL] [Abstract][Full Text] [Related]
3. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Shavandi A; Bekhit Ael-D; Sun Z; Ali A; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():373-83. PubMed ID: 26117768 [TBL] [Abstract][Full Text] [Related]
4. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. Siddiqui N; Pramanik K; Jabbari E Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():76-83. PubMed ID: 26046270 [TBL] [Abstract][Full Text] [Related]
6. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Matinfar M; Mesgar AS; Mohammadi Z Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():341-353. PubMed ID: 30948070 [TBL] [Abstract][Full Text] [Related]
9. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. Mohammadi Z; Mesgar AS; Rasouli-Disfani F J Mech Behav Biomed Mater; 2016 Aug; 61():590-599. PubMed ID: 27179144 [TBL] [Abstract][Full Text] [Related]
10. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. Singh YP; Dasgupta S; Bhaskar R J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176 [TBL] [Abstract][Full Text] [Related]
11. Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers. Karimi M; Mesgar AS; Mohammadi Z Biomed Mater; 2020 Aug; 15(5):055020. PubMed ID: 32438355 [TBL] [Abstract][Full Text] [Related]
12. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Tanase CE; Sartoris A; Popa MI; Verestiuc L; Unger RE; Kirkpatrick CJ Biomed Mater; 2013 Apr; 8(2):025002. PubMed ID: 23343569 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
14. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
15. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
16. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Venkatesan J; Ryu B; Sudha PN; Kim SK Int J Biol Macromol; 2012 Mar; 50(2):393-402. PubMed ID: 22234296 [TBL] [Abstract][Full Text] [Related]
20. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing. Sarikaya B; Aydin HM Biomed Res Int; 2015; 2015():576532. PubMed ID: 26504812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]