These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 27126227)
1. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.). Čepl J; Holá D; Stejskal J; Korecký J; Kočová M; Lhotáková Z; Tomášková I; Palovská M; Rothová O; Whetten RW; Kaňák J; Albrechtová J; Lstibůrek M Tree Physiol; 2016 Jul; 36(7):883-95. PubMed ID: 27126227 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Ivanov AG; Krol M; Sveshnikov D; Malmberg G; Gardeström P; Hurry V; Oquist G; Huner NP Planta; 2006 May; 223(6):1165-77. PubMed ID: 16333639 [TBL] [Abstract][Full Text] [Related]
3. Excitation energy partitioning and quenching during cold acclimation in Scots pine. Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904 [TBL] [Abstract][Full Text] [Related]
4. Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence. Ivanov AG; Sane PV; Zeinalov Y; Simidjiev I; Huner NP; Oquist G Planta; 2002 Jul; 215(3):457-65. PubMed ID: 12111228 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Ivanov AG; Sane PV; Zeinalov Y; Malmberg G; Gardeström P; Huner NP; Oquist G Planta; 2001 Aug; 213(4):575-85. PubMed ID: 11556790 [TBL] [Abstract][Full Text] [Related]
6. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Pollastrini M; Holland V; Brüggemann W; Koricheva J; Jussila I; Scherer-Lorenzen M; Berger S; Bussotti F Plant Biol (Stuttg); 2014 Mar; 16(2):323-31. PubMed ID: 23926925 [TBL] [Abstract][Full Text] [Related]
7. Effects of biofertilizers on the growth, leaf physiological indices and chlorophyll fluorescence response of spinach seedlings. Zhang B; Zhang H; Lu D; Cheng L; Li J PLoS One; 2023; 18(12):e0294349. PubMed ID: 38096260 [TBL] [Abstract][Full Text] [Related]
8. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. Kalisz A; Kornaś A; Skoczowski A; Oliwa J; Jurkow R; Gil J; Sękara A; Sałata A; Caruso G BMC Plant Biol; 2023 Jun; 23(1):329. PubMed ID: 37340375 [TBL] [Abstract][Full Text] [Related]
9. [Effects of water depth on the growth of Vallisneria natans and photosynthetic system II photochemical characteristics of the leaves]. Yang X; Zhang QC; Sun SY; Chen KN Ying Yong Sheng Tai Xue Bao; 2014 Jun; 25(6):1623-31. PubMed ID: 25223016 [TBL] [Abstract][Full Text] [Related]
10. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330 [TBL] [Abstract][Full Text] [Related]
11. Seasonal acclimation of photosystem II in Pinus sylvestris. I. Estimating the rate constants of sustained thermal energy dissipation and photochemistry. Porcar-Castell A; Juurola E; Nikinmaa E; Berninger F; Ensminger I; Hari P Tree Physiol; 2008 Oct; 28(10):1475-82. PubMed ID: 18708329 [TBL] [Abstract][Full Text] [Related]
12. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Bag P; Chukhutsina V; Zhang Z; Paul S; Ivanov AG; Shutova T; Croce R; Holzwarth AR; Jansson S Nat Commun; 2020 Dec; 11(1):6388. PubMed ID: 33319777 [TBL] [Abstract][Full Text] [Related]
13. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Zhang C; Atherton J; Peñuelas J; Filella I; Kolari P; Aalto J; Ruhanen H; Bäck J; Porcar-Castell A Plant Cell Environ; 2019 Dec; 42(12):3264-3279. PubMed ID: 31325364 [TBL] [Abstract][Full Text] [Related]
14. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. Guha A; Sengupta D; Reddy AR J Photochem Photobiol B; 2013 Feb; 119():71-83. PubMed ID: 23357190 [TBL] [Abstract][Full Text] [Related]
15. Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping. Keller B; Vass I; Matsubara S; Paul K; Jedmowski C; Pieruschka R; Nedbal L; Rascher U; Muller O Photosynth Res; 2019 May; 140(2):221-233. PubMed ID: 30357678 [TBL] [Abstract][Full Text] [Related]
16. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. Zendonadi Dos Santos N; Piepho HP; Condorelli GE; Licieri Groli E; Newcomb M; Ward R; Tuberosa R; Maccaferri M; Fiorani F; Rascher U; Muller O Plant Cell Environ; 2021 Sep; 44(9):2858-2878. PubMed ID: 34189744 [TBL] [Abstract][Full Text] [Related]
17. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis. Xia J; Tian Q J Environ Sci (China); 2009; 21(11):1569-74. PubMed ID: 20108692 [TBL] [Abstract][Full Text] [Related]
18. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
19. Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Zhu XG; Govindjee ; Baker NR; deSturler E; Ort DO; Long SP Planta; 2005 Dec; 223(1):114-133. PubMed ID: 16411287 [TBL] [Abstract][Full Text] [Related]
20. [Effects of Pseudomonas syringae pv. tabaci infection on tobacco photosynthetic apparatus under light or dark conditions.]. Cheng DD; Sun JP; Chai Y; Zhu YY; Zhao M; Sun GY; Sun XB Ying Yong Sheng Tai Xue Bao; 2016 Aug; 27(8):2655-2662. PubMed ID: 29733155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]