BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27126606)

  • 1. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.
    Li Z; Bai T; Dai L; Wang F; Tao J; Meng S; Hu Y; Wang S; Hu S
    Sci Rep; 2016 Apr; 6():25313. PubMed ID: 27126606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.
    Sazanova K; Osmolovskaya N; Schiparev S; Yakkonen K; Kuchaeva L; Vlasov D
    Curr Microbiol; 2015 Apr; 70(4):520-7. PubMed ID: 25502541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.
    Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B
    Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil.
    Wang J; Zhao YG; Maqbool F
    Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relationships between phosphate solubilizing ability, pH, and organic acids of
    Yang TY; Li LB; Tian J; Zhang SS; Wu ZQ
    Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4429-4438. PubMed ID: 34951284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insight into Carboxylic Acid Metabolisms and pH Regulations During Insoluble Phosphate Solubilisation Process by Penicillium oxalicum PSF-4.
    Jiang Y; Tian J; Ge F
    Curr Microbiol; 2020 Dec; 77(12):4095-4103. PubMed ID: 33063152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Formation of organic acids by fungi isolated from the surface of stone monuments].
    Sazanova KV; Shchiparev SM; Vlasov DIu
    Mikrobiologiia; 2014; 83(5):525-33. PubMed ID: 25844464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger.
    Tian D; Wang L; Hu J; Zhang L; Zhou N; Xia J; Xu M; Yusef KK; Wang S; Li Z; Gao H
    J Microbiol; 2021 Sep; 59(9):819-826. PubMed ID: 34382148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.
    Scervino JM; Papinutti VL; Godoy MS; Rodriguez MA; Della Monica I; Recchi M; Pettinari MJ; Godeas AM
    J Appl Microbiol; 2011 May; 110(5):1215-23. PubMed ID: 21324053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries.
    Lobos A; Harwood VJ; Scott KM; Cunningham JA
    J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat.
    Gaind S
    Microbiol Res; 2016 Dec; 193():94-102. PubMed ID: 27825490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum.
    Franz A; Burgstaller W; Müller B; Schinner F
    J Gen Microbiol; 1993 Sep; 139(9):2101-7. PubMed ID: 8245837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source.
    Banik S; Dey BK
    Zentralbl Mikrobiol; 1983; 138(1):17-23. PubMed ID: 6845902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments.
    Zhang Y; Chen FS; Wu XQ; Luan FG; Zhang LP; Fang XM; Wan SZ; Hu XF; Ye JR
    PLoS One; 2018; 13(7):e0199625. PubMed ID: 29995910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine.
    Chai B; Wu Y; Liu P; Liu B; Gao M
    J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal bio-sorption potential of chromium in Norkrans liquid medium by shake flask technique.
    Igiehon NO; Babalola OO
    J Basic Microbiol; 2019 Jan; 59(1):62-73. PubMed ID: 30288769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture.
    Takeda M; Knight JD
    Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubilization of Morocco phosphorite by Aspergillus niger.
    Bojinova D; Velkova R; Ivanova R
    Bioresour Technol; 2008 Oct; 99(15):7348-53. PubMed ID: 18468889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum.
    Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S
    Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.