These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27126952)

  • 21. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of motility-induced phase separation and swim pressure.
    Patch A; Yllanes D; Marchetti MC
    Phys Rev E; 2017 Jan; 95(1-1):012601. PubMed ID: 28208385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering and phase behaviour of attractive active particles with hydrodynamics.
    Navarro RM; Fielding SM
    Soft Matter; 2015 Oct; 11(38):7525-46. PubMed ID: 26278520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase behavior of active Brownian disks, spheres, and dimers.
    Siebert JT; Letz J; Speck T; Virnau P
    Soft Matter; 2017 Feb; 13(5):1020-1026. PubMed ID: 28083593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freezing and phase separation of self-propelled disks.
    Fily Y; Henkes S; Marchetti MC
    Soft Matter; 2014 Apr; 10(13):2132-40. PubMed ID: 24652167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity-driven phase separation and ordering kinetics of passive particles.
    Dikshit S; Mishra S
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):21. PubMed ID: 35254517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isotropic-nematic transition of self-propelled rods in three dimensions.
    Bott MC; Winterhalter F; Marechal M; Sharma A; Brader JM; Wittmann R
    Phys Rev E; 2018 Jul; 98(1-1):012601. PubMed ID: 30110778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase separation of an active colloidal suspension via quorum-sensing.
    Jose F; Anand SK; Singh SP
    Soft Matter; 2021 Mar; 17(11):3153-3161. PubMed ID: 33616149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collective behavior of self-propelled rods with quorum sensing.
    Abaurrea Velasco C; Abkenar M; Gompper G; Auth T
    Phys Rev E; 2018 Aug; 98(2-1):022605. PubMed ID: 30253508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of self-propulsion on equilibrium clustering.
    Mani E; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032301. PubMed ID: 26465467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How do clusters in phase-separating active matter systems grow? A study for Vicsek activity in systems undergoing vapor-solid transition.
    Paul S; Bera A; Das SK
    Soft Matter; 2021 Jan; 17(3):645-654. PubMed ID: 33210696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonequilibrium glassy dynamics of self-propelled hard disks.
    Berthier L
    Phys Rev Lett; 2014 Jun; 112(22):220602. PubMed ID: 24949749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and dynamics of a phase-separating active colloidal fluid.
    Redner GS; Hagan MF; Baskaran A
    Phys Rev Lett; 2013 Feb; 110(5):055701. PubMed ID: 23414035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applicability of effective pair potentials for active Brownian particles.
    Rein M; Speck T
    Eur Phys J E Soft Matter; 2016 Sep; 39(9):84. PubMed ID: 27628695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization in a dense suspension of self-propelled particles.
    Bialké J; Speck T; Löwen H
    Phys Rev Lett; 2012 Apr; 108(16):168301. PubMed ID: 22680759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleation via an unstable intermediate phase.
    Sear RP
    J Chem Phys; 2009 Aug; 131(7):074702. PubMed ID: 19708753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of polydispersity on the dynamics of active Brownian particles.
    Kumar S; Singh JP; Giri D; Mishra S
    Phys Rev E; 2021 Aug; 104(2-1):024601. PubMed ID: 34525623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamical self-assembly of dipolar active Brownian particles in two dimensions.
    Liao GJ; Hall CK; Klapp SHL
    Soft Matter; 2020 Mar; 16(9):2208-2223. PubMed ID: 32090218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective interactions in active Brownian suspensions.
    Farage TF; Krinninger P; Brader JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042310. PubMed ID: 25974494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.