These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27126952)

  • 41. Effective interactions in active Brownian suspensions.
    Farage TF; Krinninger P; Brader JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042310. PubMed ID: 25974494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced Phase Separation.
    Digregorio P; Levis D; Suma A; Cugliandolo LF; Gonnella G; Pagonabarraga I
    Phys Rev Lett; 2018 Aug; 121(9):098003. PubMed ID: 30230874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reentrant phase separation behavior of active particles with anisotropic Janus interaction.
    Pu M; Jiang H; Hou Z
    Soft Matter; 2017 Jun; 13(22):4112-4121. PubMed ID: 28548147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting the phase behavior of mixtures of active spherical particles.
    van der Meer B; Prymidis V; Dijkstra M; Filion L
    J Chem Phys; 2020 Apr; 152(14):144901. PubMed ID: 32295380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel approach to the theory of homogeneous and heterogeneous nucleation.
    Ruckenstein E; Berim GO; Narsimhan G
    Adv Colloid Interface Sci; 2015 Jan; 215():13-27. PubMed ID: 25498347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase coexistence of active Brownian particles.
    Hermann S; Krinninger P; de Las Heras D; Schmidt M
    Phys Rev E; 2019 Nov; 100(5-1):052604. PubMed ID: 31869869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase separation of self-propelled disks with ferromagnetic and nematic alignment.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collective behavior of passive and active circle swimming particle mixtures.
    Hrishikesh B; Mani E
    Soft Matter; 2023 Jan; 19(2):225-232. PubMed ID: 36510815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Configurational entropy and effective temperature in systems of active Brownian particles.
    Preisler Z; Dijkstra M
    Soft Matter; 2016 Jul; 12(28):6043-8. PubMed ID: 27328434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aggregation and sedimentation of active Brownian particles at constant affinity.
    Fischer A; Chatterjee A; Speck T
    J Chem Phys; 2019 Feb; 150(6):064910. PubMed ID: 30769983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. State behaviour and dynamics of self-propelled Brownian squares: a simulation study.
    Prymidis V; Samin S; Filion L
    Soft Matter; 2016 May; 12(19):4309-17. PubMed ID: 27079655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Jan; 126(3):038002. PubMed ID: 33543975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crossover from nucleation to spinodal decomposition in a condensing vapor.
    Wedekind J; Chkonia G; Wölk J; Strey R; Reguera D
    J Chem Phys; 2009 Sep; 131(11):114506. PubMed ID: 19778128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brownian motion with active fluctuations.
    Romanczuk P; Schimansky-Geier L
    Phys Rev Lett; 2011 Jun; 106(23):230601. PubMed ID: 21770491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrodynamic suppression of phase separation in active suspensions.
    Matas-Navarro R; Golestanian R; Liverpool TB; Fielding SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032304. PubMed ID: 25314443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles.
    Shklyaev OE; Shum H; Yashin VV; Balazs AC
    Langmuir; 2017 Aug; 33(32):7873-7880. PubMed ID: 28742362
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystallization and dynamical arrest of attractive hard spheres.
    Babu S; Gimel JC; Nicolai T
    J Chem Phys; 2009 Feb; 130(6):064504. PubMed ID: 19222281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.