BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27127005)

  • 1. MR Imaging of the Pituitary Gland and Postsphenoid Ossification in Fetal Specimens.
    Mehemed TM; Fushimi Y; Okada T; Kanagaki M; Yamamoto A; Okada T; Takakuwa T; Yamada S; Togashi K
    AJNR Am J Neuroradiol; 2016 Aug; 37(8):1523-7. PubMed ID: 27127005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative study of the ossification centers of the body of sphenoid bone in the human fetus.
    Grzonkowska M; Baumgart M; Szpinda M
    Sci Rep; 2024 Jun; 14(1):13522. PubMed ID: 38866900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR, CT, and plain film imaging of the developing skull base in fetal specimens.
    Nemzek WR; Brodie HA; Hecht ST; Chong BW; Babcook CJ; Seibert JA
    AJNR Am J Neuroradiol; 2000 Oct; 21(9):1699-706. PubMed ID: 11039353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transsphenoidal meningocele: an anatomical study using human fetuses including report of a case.
    Katori Y; Kawamoto A; Cho KH; Ishii K; Abe H; Abe S; Rodríguez-Vázquez JF; Murakami G; Kawase T
    Eur Arch Otorhinolaryngol; 2013 Sep; 270(10):2729-36. PubMed ID: 23408024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T1 signal intensity and height of the anterior pituitary in neonates: correlation with postnatal time.
    Kitamura E; Miki Y; Kawai M; Itoh H; Yura S; Mori N; Sugimura K; Togashi K
    AJNR Am J Neuroradiol; 2008 Aug; 29(7):1257-60. PubMed ID: 18417600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient Hyperintensity of the Infant Thyroid Gland on T1-Weighted MR Imaging: Correlation with Postnatal Age, Gestational Age, and Signal Intensity of the Pituitary Gland.
    Maki H; Nakagawa M; Kagaya R; Kumazawa S; Matsumoto K; Hatano M; Miyake Y; Sugihara W; Shibamoto Y
    AJNR Am J Neuroradiol; 2021 May; 42(5):955-960. PubMed ID: 33632737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal fetal lumbar spine on postmortem MR imaging.
    Widjaja E; Whitby EH; Paley MN; Griffiths PD
    AJNR Am J Neuroradiol; 2006 Mar; 27(3):553-9. PubMed ID: 16551992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal development of the human osseous temporomandibular region.
    Bach-Petersen S; Kjaer I; Fischer-Hansen B
    J Craniofac Genet Dev Biol; 1994; 14(3):135-43. PubMed ID: 7852542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and morphometric study on sphenoid and basioccipital ossification in normal human fetuses.
    Zhang Q; Wang H; Udagawa J; Otani H
    Congenit Anom (Kyoto); 2011 Sep; 51(3):138-48. PubMed ID: 21848997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR imaging of the pituitary gland in infants and children: changes in size, shape, and MR signal with growth and development.
    Tien RD; Kucharczyk J; Bessette J; Middleton M
    AJR Am J Roentgenol; 1992 May; 158(5):1151-4. PubMed ID: 1566682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior pituitary gland in pregnancy: hyperintensity at MR.
    Miki Y; Asato R; Okumura R; Togashi K; Kimura I; Kawakami S; Konishi J
    Radiology; 1993 Apr; 187(1):229-31. PubMed ID: 8451418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal size of the fetal adrenal gland on prenatal magnetic resonance imaging.
    Smitthimedhin A; Rubio EI; Blask AR; Loomis JM; Bulas DI
    Pediatr Radiol; 2020 May; 50(6):840-847. PubMed ID: 32060593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiographic determination of prenatal basicranial ossification.
    Kjaer I
    J Craniofac Genet Dev Biol; 1990; 10(2):113-23. PubMed ID: 2211961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ossification and midline shape changes of the human fetal cranial base.
    Jeffery N; Spoor F
    Am J Phys Anthropol; 2004 Jan; 123(1):78-90. PubMed ID: 14669239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental patterns of fetal fat and corresponding signal on T1-weighted magnetic resonance imaging.
    Blondiaux E; Chougar L; Gelot A; Valence S; Audureau E; Ducou le Pointe H; Jouannic JM; Dhombres F; Garel C
    Pediatr Radiol; 2018 Mar; 48(3):317-324. PubMed ID: 29279948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative description of the morphology and ossification center in the axial skeleton of 20-week gestation formalin-fixed human fetuses using magnetic resonance images.
    Chabert S; Villalobos M; Ulloa P; Salas R; Tejos C; San Martin S; Pereda J
    Prenat Diagn; 2012 Mar; 32(3):252-8. PubMed ID: 22430723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative study of the primary ossification centre of the parietal bone in the human fetus.
    Grzonkowska M; Baumgart M; Badura M; Wiśniewski M; Szpinda M
    Folia Morphol (Warsz); 2023; 82(2):307-314. PubMed ID: 35239181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age related signal changes of the pituitary stalk on thin-slice magnetic resonance imaging in infants.
    Okazaki T; Niwa T; Suzuki K; Shibukawa S; Imai Y
    Brain Dev; 2019 Apr; 41(4):327-333. PubMed ID: 30514608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery.
    Chittiboina P; Talagala SL; Merkle H; Sarlls JE; Montgomery BK; Piazza MG; Scott G; Ray-Chaudhury A; Lonser RR; Oldfield EH; Koretsky AP; Butman JA
    J Neurosurg; 2016 Dec; 125(6):1451-1459. PubMed ID: 26991390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative anatomy of the primary ossification center of the squamous part of temporal bone in the human fetus.
    Grzonkowska M; Baumgart M; Kułakowski M; Szpinda M
    PLoS One; 2023; 18(12):e0295590. PubMed ID: 38060582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.