These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27127035)
1. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic. He F; Ren W; Tian X; Liu W; Wu S; Chen X Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():117-123. PubMed ID: 27127035 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. He F; Zhang J; Yang F; Zhu J; Tian X; Chen X Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269 [TBL] [Abstract][Full Text] [Related]
3. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Yang Y; He F; Ye J Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1004-9. PubMed ID: 27612796 [TBL] [Abstract][Full Text] [Related]
4. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Li B; Liao X; Zheng L; Zhu X; Wang Z; Fan H; Zhang X Acta Biomater; 2012 Oct; 8(10):3794-804. PubMed ID: 22729020 [TBL] [Abstract][Full Text] [Related]
5. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Kai T; Shao-qing G; Geng-ting D Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487 [TBL] [Abstract][Full Text] [Related]
6. Osteoinductivity of Porous Biphasic Calcium Phosphate Ceramic Spheres with Nanocrystalline and Their Efficacy in Guiding Bone Regeneration. Li X; Song T; Chen X; Wang M; Yang X; Xiao Y; Zhang X ACS Appl Mater Interfaces; 2019 Jan; 11(4):3722-3736. PubMed ID: 30629405 [TBL] [Abstract][Full Text] [Related]
7. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. Zhang J; Barbieri D; ten Hoopen H; de Bruijn JD; van Blitterswijk CA; Yuan H J Biomed Mater Res A; 2015 Mar; 103(3):1188-99. PubMed ID: 25044678 [TBL] [Abstract][Full Text] [Related]
8. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. Wang L; Barbieri D; Zhou H; de Bruijn JD; Bao C; Yuan H J Biomed Mater Res A; 2015 Jun; 103(6):1919-29. PubMed ID: 25203625 [TBL] [Abstract][Full Text] [Related]
9. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645 [TBL] [Abstract][Full Text] [Related]
10. Bone neoformation of a novel porous resorbable Si-Ca-P-based ceramic with osteoconductive properties: physical and mechanical characterization, histological and histomorphometric study. De Aza PN; Mate-Sanchez de Val JE; Baudin C; Perez Albacete-Martínez C; Armijo Salto A; Calvo-Guirado JL Clin Oral Implants Res; 2016 Nov; 27(11):1368-1375. PubMed ID: 26775798 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. Badr-Mohammadi MR; Hesaraki S; Zamanian A J Mater Sci Mater Med; 2014 Jan; 25(1):185-97. PubMed ID: 24101184 [TBL] [Abstract][Full Text] [Related]
12. Bone neo-formation and mineral degradation of 4Bone.(®) Part II: histological and histomorphometric analysis in critical size defects in rabbits. Calvo-Guirado JL; Maté-Sánchez JE; Delgado-Ruiz RA; Romanos GE; De Aza-Moya P; Velázquez P Clin Oral Implants Res; 2015 Dec; 26(12):1402-6. PubMed ID: 25163802 [TBL] [Abstract][Full Text] [Related]
13. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. Shi H; Ma J; Zhao N; Chen Y; Liao Y J Mater Sci Mater Med; 2008 Dec; 19(12):3515-24. PubMed ID: 18622766 [TBL] [Abstract][Full Text] [Related]
14. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria. Hwang JW; Park JS; Lee JS; Jung UW; Kim CS; Cho KS; Lee YK; Choi SH J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2044-52. PubMed ID: 22865716 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of osteoinductive calcium phosphate ceramics repairing alveolar cleft defects in dog model. Yao J; Chen H; Gao Q; Liang Z Biomed Mater Eng; 2018; 29(2):229-240. PubMed ID: 29457596 [TBL] [Abstract][Full Text] [Related]
17. Novel antimicrobial phosphate-free glass-ceramic scaffolds for bone tissue regeneration. Suárez M; Fernández-García E; Fernández A; López-Píriz R; Díaz R; Torrecillas R Sci Rep; 2020 Aug; 10(1):13171. PubMed ID: 32826917 [TBL] [Abstract][Full Text] [Related]
18. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. Gauthier O; Khairoun I; Bosco J; Obadia L; Bourges X; Rau C; Magne D; Bouler JM; Aguado E; Daculsi G; Weiss P J Biomed Mater Res A; 2003 Jul; 66(1):47-54. PubMed ID: 12833430 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Fu K; Xu Q; Czernuszka J; Triffitt JT; Xia Z Biomed Mater; 2013 Dec; 8(6):065007. PubMed ID: 24288015 [TBL] [Abstract][Full Text] [Related]
20. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Dahlin C; Obrecht M; Dard M; Donos N Clin Oral Implants Res; 2015 Jul; 26(7):814-22. PubMed ID: 24593049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]