These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 27127047)
1. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics. Singh SS; Roy A; Lee B; Kumta PN Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():219-228. PubMed ID: 27127047 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics. Singh SS; Roy A; Lee B; Banerjee I; Kumta PN Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():636-645. PubMed ID: 27287163 [TBL] [Abstract][Full Text] [Related]
3. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. Kazemi M; Dehghan MM; Azami M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377 [TBL] [Abstract][Full Text] [Related]
4. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. Kim HW; Koh YH; Kong YM; Kang JG; Kim HE J Mater Sci Mater Med; 2004 Oct; 15(10):1129-34. PubMed ID: 15516874 [TBL] [Abstract][Full Text] [Related]
5. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. Zhang M; Wu C; Lin K; Fan W; Chen L; Xiao Y; Chang J J Biomed Mater Res A; 2012 Nov; 100(11):2979-90. PubMed ID: 22696393 [TBL] [Abstract][Full Text] [Related]
6. MC3T3-E1 proliferation and differentiation on biphasic mixtures of Mg substituted β-tricalcium phosphate and amorphous calcium phosphate. Singh SS; Roy A; Lee BE; Banerjee I; Kumta PN Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():589-98. PubMed ID: 25491868 [TBL] [Abstract][Full Text] [Related]
7. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Rai B; Lin JL; Lim ZX; Guldberg RE; Hutmacher DW; Cool SM Biomaterials; 2010 Nov; 31(31):7960-70. PubMed ID: 20688388 [TBL] [Abstract][Full Text] [Related]
9. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering. Wójtowicz J; Leszczyńska J; Chróścicka A; Slósarczyk A; Paszkiewicz Z; Zima A; Rożniatowski K; Jeleń P; Lewandowska-Szumieł M Biomed Mater Eng; 2014; 24(3):1609-23. PubMed ID: 24840199 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro. An S; Gao Y; Huang X; Ling J; Liu Z; Xiao Y Int J Mol Med; 2015 May; 35(5):1341-6. PubMed ID: 25738431 [TBL] [Abstract][Full Text] [Related]
11. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3(PO4)2 scaffolds. Wang C; Lin K; Chang J; Sun J J Biomed Mater Res A; 2014 Jul; 102(7):2096-104. PubMed ID: 23894078 [TBL] [Abstract][Full Text] [Related]
12. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
14. A study of strontium doped calcium phosphate coatings on AZ31. Singh SS; Roy A; Lee BE; Ohodnicki J; Loghmanian A; Banerjee I; Kumta PN Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():357-65. PubMed ID: 24857503 [TBL] [Abstract][Full Text] [Related]
15. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Bellucci D; Sola A; Cacciotti I; Bartoli C; Gazzarri M; Bianco A; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():312-24. PubMed ID: 25063124 [TBL] [Abstract][Full Text] [Related]
16. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. Kasten P; Vogel J; Beyen I; Weiss S; Niemeyer P; Leo A; Lüginbuhl R J Biomater Appl; 2008 Sep; 23(2):169-88. PubMed ID: 18632770 [TBL] [Abstract][Full Text] [Related]
17. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold. Arahira T; Todo M J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676 [TBL] [Abstract][Full Text] [Related]
18. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
19. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Zhang J; Dalbay MT; Luo X; Vrij E; Barbieri D; Moroni L; de Bruijn JD; van Blitterswijk CA; Chapple JP; Knight MM; Yuan H Acta Biomater; 2017 Jul; 57():487-497. PubMed ID: 28456657 [TBL] [Abstract][Full Text] [Related]
20. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts. Nan K; Sun S; Li Y; Chen H; Wu T; Lu F J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]