BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27127104)

  • 1. Putative role of 5-HT
    Segelcke D; Messlinger K
    Cephalalgia; 2017 Apr; 37(4):365-371. PubMed ID: 27127104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia facilitates neurogenic dural plasma protein extravasation in mice: a novel animal model for migraine pathophysiology.
    Hunfeld A; Segelcke D; Bäcker I; Mecheri B; Hemmer K; Dlugosch E; Andriske M; Paris F; Zhu X; Lübbert H
    Sci Rep; 2015 Dec; 5():17845. PubMed ID: 26644235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenic dural protein extravasation induced by meta-chlorophenylpiperazine (mCPP) involves nitric oxide and 5-HT2B receptor activation.
    Johnson KW; Nelson DL; Dieckman DK; Wainscott DB; Lucaites VL; Audia JE; Owton WM; Phebus LA
    Cephalalgia; 2003 Mar; 23(2):117-23. PubMed ID: 12603368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache?
    Schmuck K; Ullmer C; Kalkman HO; Probst A; Lubbert H
    Eur J Neurosci; 1996 May; 8(5):959-67. PubMed ID: 8743744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin in migraine: theories, animal models and emerging therapies.
    Johnson KW; Phebus LA; Cohen ML
    Prog Drug Res; 1998; 51():219-44. PubMed ID: 9949863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BF-1--a novel selective 5-HT2B receptor antagonist blocking neurogenic dural plasma protein extravasation in guinea pigs.
    Schmitz B; Ullmer C; Segelcke D; Gwarek M; Zhu XR; Lübbert H
    Eur J Pharmacol; 2015 Mar; 751():73-80. PubMed ID: 25666387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments in 5-hydroxytryptamine receptor pharmacology in migraine.
    Peroutka SJ
    Neurol Clin; 1990 Nov; 8(4):829-39. PubMed ID: 2259314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurogenic inflammation in the context of migraine.
    Williamson DJ; Hargreaves RJ
    Microsc Res Tech; 2001 May; 53(3):167-78. PubMed ID: 11301492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine.
    Wang X; Fang Y; Liang J; Yin Z; Miao J; Luo N
    Headache; 2010 Apr; 50(4):579-87. PubMed ID: 20236348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy.
    Schaerlinger B; Hickel P; Etienne N; Guesnier L; Maroteaux L
    Br J Pharmacol; 2003 Sep; 140(2):277-84. PubMed ID: 12970106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of tropoxin on cerebrovascular effects of meta-chlorophenylpiperazine and serotonin].
    Gorbunov AA; Gan'shina TS; Mirzoian RS
    Eksp Klin Farmakol; 2010 Sep; 73(9):13-6. PubMed ID: 21086646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral and central activation of trigeminal pain pathways in migraine: data from experimental animal models.
    Buzzi MG; Tassorelli C; Nappi G
    Cephalalgia; 2003; 23 Suppl 1():1-4. PubMed ID: 12699454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of homogeneous high-affinity agonist binding assays for 5-HT2 receptor subtypes.
    Song J; Hanniford D; Doucette C; Graham E; Poole MF; Ting A; Sherf B; Harrington J; Brunden K; Stricker-Krongrad A
    Assay Drug Dev Technol; 2005 Dec; 3(6):649-59. PubMed ID: 16438660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal plasma extravasation in animals but not in humans: implications for the pathophysiology of migraine.
    May A; Shepheard SL; Knorr M; Effert R; Wessing A; Hargreaves RJ; Goadsby PJ; Diener HC
    Brain; 1998 Jul; 121 ( Pt 7)():1231-7. PubMed ID: 9679775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migraine.
    Benemei S; Nicoletti P; Capone JG; De Cesaris F; Geppetti P
    Handb Exp Pharmacol; 2009; (194):75-89. PubMed ID: 19655105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathophysiology of migraine: year 2005.
    Buzzi MG; Moskowitz MA
    J Headache Pain; 2005 Jun; 6(3):105-11. PubMed ID: 16355290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The trigemino-vascular system and migraine.
    Buzzi MG; Moskowitz MA
    Pathol Biol (Paris); 1992 Apr; 40(4):313-7. PubMed ID: 1379707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relevance of preclinical research models for the development of antimigraine drugs: focus on 5-HT(1B/1D) and CGRP receptors.
    Gupta S; Villalón CM
    Pharmacol Ther; 2010 Oct; 128(1):170-90. PubMed ID: 20655327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception.
    Akerman S; Holland PR; Hoffmann J
    Cephalalgia; 2013 Jun; 33(8):577-92. PubMed ID: 23671254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations into migraine pathogenesis: time course for effects of m-CPP, BW723C86 or glyceryl trinitrate on appearance of Fos-like immunoreactivity in rat trigeminal nucleus caudalis (TNC).
    Martin RS; Martin GR
    Cephalalgia; 2001 Feb; 21(1):46-52. PubMed ID: 11298663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.