BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27127154)

  • 1. Increase in Gene Expression of TYMP, DPYD and HIF1A Are Associated with Response to Preoperative Chemoradiotherapy Including S-1 or UFT for Rectal Cancer.
    Sadahiro S; Suzuki T; Tanaka A; Okada K; Saito G; Kamijo A; Nagase H
    Anticancer Res; 2016 May; 36(5):2433-40. PubMed ID: 27127154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression levels of gamma-glutamyl hydrolase in tumor tissues may be a useful biomarker for the proper use of S-1 and tegafur-uracil/leucovorin in preoperative chemoradiotherapy for patients with rectal cancer.
    Sadahiro S; Suzuki T; Tanaka A; Okada K; Saito G; Miyakita H; Ogimi T; Nagase H
    Cancer Chemother Pharmacol; 2017 Jun; 79(6):1077-1085. PubMed ID: 28417167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymidylate synthase, thymidine phosphorylase, dihydropyrimidine dehydrogenase expression, and histological tumour regression after 5-FU-based neo-adjuvant chemoradiotherapy in rectal cancer.
    Jakob C; Aust DE; Meyer W; Baretton GB; Schwabe W; Häusler P; Becker H; Liersch T
    J Pathol; 2004 Dec; 204(5):562-8. PubMed ID: 15538739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of response to preoperative chemoradiotherapy and establishment of individualized therapy in advanced rectal cancer.
    Nakao T; Iwata T; Hotchi M; Yoshikawa K; Higashijima J; Nishi M; Takasu C; Eto S; Teraoku H; Shimada M
    Oncol Rep; 2015 Oct; 34(4):1961-7. PubMed ID: 26260776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic value of histologic tumor regression, thymidylate synthase, thymidine phosphorylase, and dihydropyrimidine dehydrogenase in rectal cancer UICC Stage II/III after neoadjuvant chemoradiotherapy.
    Jakob C; Liersch T; Meyer W; Baretton GB; Schwabe W; Häusler P; Kulle B; Becker H; Aust DE
    Am J Surg Pathol; 2006 Sep; 30(9):1169-74. PubMed ID: 16931962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TS and DPD mRNA levels on formalin-fixed paraffin-embedded specimens as predictors for distant recurrence of rectal cancer treated with preoperative chemoradiotherapy.
    Tanaka K; Saigusa S; Toiyama Y; Koike Y; Okugawa Y; Yokoe T; Inoue Y; Kobayashi M; Miki C; Kusunoki M
    J Surg Oncol; 2012 May; 105(6):529-34. PubMed ID: 22006578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profile can predict pathological response to preoperative chemoradiotherapy in rectal cancer.
    Nishioka M; Shimada M; Kurita N; Iwata T; Morimoto S; Yoshikawa K; Higashijima J; Miyatani T
    Cancer Genomics Proteomics; 2011; 8(2):87-92. PubMed ID: 21471518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression levels of thymidylate synthase, dihydropyrimidine dehydrogenase, and thymidine phosphorylase in patients with colorectal cancer.
    Goto T; Shinmura K; Yokomizo K; Sakuraba K; Kitamura Y; Shirahata A; Saito M; Kigawa G; Nemoto H; Sanada Y; Hibi K
    Anticancer Res; 2012 May; 32(5):1757-62. PubMed ID: 22593457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biopsy specimens obtained 7 days after starting chemoradiotherapy (CRT) provide reliable predictors of response to CRT for rectal cancer.
    Suzuki T; Sadahiro S; Tanaka A; Okada K; Kamata H; Kamijo A; Murayama C; Akiba T; Kawada S
    Int J Radiat Oncol Biol Phys; 2013 Apr; 85(5):1232-8. PubMed ID: 23158058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPYD, TYMS, TYMP, TK1, and TK2 genetic expressions as response markers in locally advanced rectal cancer patients treated with fluoropyrimidine-based chemoradiotherapy.
    Huang MY; Wu CH; Huang CM; Chung FY; Huang CW; Tsai HL; Chen CF; Lin SR; Wang JY
    Biomed Res Int; 2013; 2013():931028. PubMed ID: 24455740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase II and gene expression analysis trial of neoadjuvant capecitabine plus irinotecan followed by capecitabine-based chemoradiotherapy for locally advanced rectal cancer: Hoosier Oncology Group GI03-53.
    Chiorean EG; Sanghani S; Schiel MA; Yu M; Burns M; Tong Y; Hinkle DT; Coleman N; Robb B; LeBlanc J; Clark R; Bufill J; Curie C; Loehrer PJ; Cardenes H
    Cancer Chemother Pharmacol; 2012 Jul; 70(1):25-32. PubMed ID: 22610353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of right-sided tumors with high thymidine phosphorylase gene expression levels and the response to oral uracil and tegafur/leucovorin chemotherapy among patients with colorectal cancer.
    Sadahiro S; Suzuki T; Tanaka A; Okada K; Nagase H; Uchida J
    Cancer Chemother Pharmacol; 2012 Aug; 70(2):285-91. PubMed ID: 22752215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor 5-FU-related mRNA Expression and Efficacy of Oral Fluoropyrimidines in Adjuvant Chemotherapy of Colorectal Cancer.
    Koda K; Miyauchi H; Kosugi C; Kaiho T; Takiguchi N; Kobayashi S; Maruyama T; Matsubara H;
    Anticancer Res; 2016 Oct; 36(10):5325-5331. PubMed ID: 27798895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-dose radiotherapy (60 Gy) with oral UFT/folinic acid and escalating doses of oxaliplatin in patients with non-resectable locally advanced rectal cancer (LARC): a phase I trial.
    Vestermark LW; Jensen HA; Pfeiffer P
    Acta Oncol; 2012 Mar; 51(3):311-7. PubMed ID: 22248062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy.
    Saigusa S; Tanaka K; Toiyama Y; Yokoe T; Okugawa Y; Ioue Y; Miki C; Kusunoki M
    Ann Surg Oncol; 2009 Dec; 16(12):3488-98. PubMed ID: 19657699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiles of epidermal growth factor receptor, vascular endothelial growth factor and hypoxia-inducible factor-1 with special reference to local responsiveness to neoadjuvant chemoradiotherapy and disease recurrence after rectal cancer surgery.
    Toiyama Y; Inoue Y; Saigusa S; Okugawa Y; Yokoe T; Tanaka K; Miki C; Kusunoki M
    Clin Oncol (R Coll Radiol); 2010 May; 22(4):272-80. PubMed ID: 20117921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in thymidine phosphorylase gene expression related to treatment of rectal cancer.
    Derwinger K; Lindskog EB; Palmqvist E; Wettergren Y
    Anticancer Res; 2013 Jun; 33(6):2447-51. PubMed ID: 23749894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymph node status and TS gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy.
    Liersch T; Langer C; Ghadimi BM; Kulle B; Aust DE; Baretton GB; Schwabe W; Häusler P; Becker H; Jakob C
    J Clin Oncol; 2006 Sep; 24(25):4062-8. PubMed ID: 16943523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray cross-complementing group 1 and thymidylate synthase polymorphisms might predict response to chemoradiotherapy in rectal cancer patients.
    Lamas MJ; Duran G; Gomez A; Balboa E; Anido U; Bernardez B; Rana-Diez P; Lopez R; Carracedo A; Barros F
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):138-44. PubMed ID: 21167658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical significance of CD133 and hypoxia inducible factor-1α gene expression in rectal cancer after preoperative chemoradiotherapy.
    Saigusa S; Tanaka K; Toiyama Y; Yokoe T; Okugawa Y; Koike Y; Fujikawa H; Inoue Y; Miki C; Kusunoki M
    Clin Oncol (R Coll Radiol); 2011 Jun; 23(5):323-32. PubMed ID: 20970309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.