These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27127199)

  • 41. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.
    Yamamoto K; Ando J
    J Cell Sci; 2013 Mar; 126(Pt 5):1227-34. PubMed ID: 23378020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A skin-inspired soft material with directional mechanosensation.
    Makhoul-Mansour MM; Challita EJ; Chaurasia A; Leo DJ; Sukharev S; Freeman EC
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33848998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amplification in the auditory periphery: the effect of coupling tuning mechanisms.
    Montgomery KA; Silber M; Solla SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051924. PubMed ID: 17677115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vibration isolation by exploring bio-inspired structural nonlinearity.
    Wu Z; Jing X; Bian J; Li F; Allen R
    Bioinspir Biomim; 2015 Oct; 10(5):056015. PubMed ID: 26448392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A three-dimensional viscoelastic model for cell deformation with experimental verification.
    Karcher H; Lammerding J; Huang H; Lee RT; Kamm RD; Kaazempur-Mofrad MR
    Biophys J; 2003 Nov; 85(5):3336-49. PubMed ID: 14581235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two adaptation processes in auditory hair cells together can provide an active amplifier.
    Vilfan A; Duke T
    Biophys J; 2003 Jul; 85(1):191-203. PubMed ID: 12829475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amplitude death of coupled hair bundles with stochastic channel noise.
    Kim KJ; Ahn KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042703. PubMed ID: 24827274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The mechanoelectrical response of droplet interface bilayer membranes.
    Freeman EC; Najem JS; Sukharev S; Philen MK; Leo DJ
    Soft Matter; 2016 Mar; 12(12):3021-31. PubMed ID: 26905644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A micro-fabricated force sensor using an all thin film piezoelectric active sensor.
    Lee J; Choi W; Yoo YK; Hwang KS; Lee SM; Kang S; Kim J; Lee JH
    Sensors (Basel); 2014 Nov; 14(12):22199-207. PubMed ID: 25429407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dry membrane protection technique to allow surface acoustic wave biosensor measurements of biological model membrane approaches.
    Reder-Christ K; Schmitz P; Bota M; Gerber U; Falkenstein-Paul H; Fuss C; Enachescu M; Bendas G
    Sensors (Basel); 2013 Sep; 13(9):12392-405. PubMed ID: 24064603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensing sound: molecules that orchestrate mechanotransduction by hair cells.
    Kazmierczak P; Müller U
    Trends Neurosci; 2012 Apr; 35(4):220-9. PubMed ID: 22177415
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid bilayer membrane arrays: fabrication and applications.
    Han X; Qi G; Xu X; Wang L
    Adv Biochem Eng Biotechnol; 2013; 131():121-52. PubMed ID: 22743692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays.
    Nguyen MA; Srijanto B; Collier CP; Retterer ST; Sarles SA
    Lab Chip; 2016 Sep; 16(18):3576-88. PubMed ID: 27513561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photopolymerized microdomains in both lipid leaflets establish diffusive transport pathways across biomimetic membranes.
    Makhoul-Mansour MM; El-Beyrouthy JB; Mumme HL; Freeman EC
    Soft Matter; 2019 Nov; 15(43):8718-8727. PubMed ID: 31553025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System.
    Song T; Lee WS; Ahn KH
    Sci Rep; 2015 Jun; 5():11470. PubMed ID: 26074375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-demand droplet release for droplet-based microfluidic system.
    Wang W; Yang C; Liu Y; Li CM
    Lab Chip; 2010 Mar; 10(5):559-62. PubMed ID: 20162230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fishing for key players in mechanotransduction.
    Nicolson T
    Trends Neurosci; 2005 Mar; 28(3):140-4. PubMed ID: 15749167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance.
    Mun S; Choi SJ
    Biosens Bioelectron; 2009 Apr; 24(8):2522-7. PubMed ID: 19201593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.