BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27127449)

  • 1. Genetic Variation of Fatty Acid Oxidation and Obesity, A Literature Review.
    Freitag Luglio H
    Int J Biomed Sci; 2016 Mar; 12(1):1-8. PubMed ID: 27127449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss.
    Rupasinghe HP; Sekhon-Loodu S; Mantso T; Panayiotidis MI
    Pharmacol Ther; 2016 Sep; 165():153-63. PubMed ID: 27288729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coimmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training.
    Schenk S; Horowitz JF
    Am J Physiol Endocrinol Metab; 2006 Aug; 291(2):E254-60. PubMed ID: 16670153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free fatty acid metabolism and obesity in man: in vivo in vitro comparisons.
    Lillioja S; Foley J; Bogardus C; Mott D; Howard BV
    Metabolism; 1986 Jun; 35(6):505-14. PubMed ID: 3713512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.
    Simoneau JA; Veerkamp JH; Turcotte LP; Kelley DE
    FASEB J; 1999 Nov; 13(14):2051-60. PubMed ID: 10544188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fat oxidation, lipolysis, and free fatty acid cycling in obesity-prone and obesity-resistant rats.
    Commerford SR; Pagliassotti MJ; Melby CL; Wei Y; Gayles EC; Hill JO
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E875-85. PubMed ID: 11001771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Sea Water Improves Abnormalities in Lipid Metabolism through Lipolysis and Fatty Acid Oxidation in High-Fat Diet-Induced Obese Rats.
    Chang WT; Lu TY; Cheng MC; Lu HC; Wu MF; Hsu CL
    Mar Drugs; 2017 Dec; 15(12):. PubMed ID: 29232925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity.
    Thupari JN; Landree LE; Ronnett GV; Kuhajda FP
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9498-502. PubMed ID: 12060712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation.
    Jocken JW; Blaak EE; Schiffelers S; Arner P; van Baak MA; Saris WH
    Int J Obes (Lond); 2007 May; 31(5):813-9. PubMed ID: 17130852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of putative fatty acid transporters and Acyl-CoA synthetase in liver and adipose tissue in ob/ob mice.
    Memon RA; Fuller J; Moser AH; Smith PJ; Grunfeld C; Feingold KR
    Diabetes; 1999 Jan; 48(1):121-7. PubMed ID: 9892232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lavatera critica, a green leafy vegetable, controls high fat diet induced hepatic lipid accumulation and oxidative stress through the regulation of lipogenesis and lipolysis genes.
    Veeramani C; Alsaif MA; Al-Numair KS
    Biomed Pharmacother; 2017 Dec; 96():1349-1357. PubMed ID: 29174039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle.
    Pedersen L; Olsen CH; Pedersen BK; Hojman P
    Am J Physiol Endocrinol Metab; 2012 Apr; 302(7):E831-40. PubMed ID: 22275756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein-sparing effect of α-lipoic acid in juvenile grass carp, Ctenopharyngodon idellus: effects on lipolysis, fatty acid β-oxidation and protein synthesis.
    Shi XC; Jin A; Sun J; Tian JJ; Ji H; Chen LQ; Du ZY
    Br J Nutr; 2018 Nov; 120(9):977-987. PubMed ID: 30198455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle.
    Han XX; Chabowski A; Tandon NN; Calles-Escandon J; Glatz JF; Luiken JJ; Bonen A
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E566-75. PubMed ID: 17519284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of fatty-acid-handling proteins in human adipose tissue in relation to obesity and insulin resistance.
    Gertow K; Pietiläinen KH; Yki-Järvinen H; Kaprio J; Rissanen A; Eriksson P; Hamsten A; Fisher RM
    Diabetologia; 2004 Jun; 47(6):1118-25. PubMed ID: 15168018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women.
    Holloway GP; Thrush AB; Heigenhauser GJ; Tandon NN; Dyck DJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1782-9. PubMed ID: 17311893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation.
    Bezaire V; Bruce CR; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E509-15. PubMed ID: 16219667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in lipid metabolism in diet-induced obesity.
    Triscari J; Nauss-Karol C; Levin BE; Sullivan AC
    Metabolism; 1985 Jun; 34(6):580-7. PubMed ID: 3889541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metformin suppresses lipid accumulation in skeletal muscle by promoting fatty acid oxidation.
    Wang C; Liu F; Yuan Y; Wu J; Wang H; Zhang L; Hu P; Li Z; Li Q; Ye J
    Clin Lab; 2014; 60(6):887-96. PubMed ID: 25016691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.