These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27127534)

  • 1. The Virtual Screening of the Drug Protein with a Few Crystal Structures Based on the Adaboost-SVM.
    Wang MY; Li P; Qiao PL
    Comput Math Methods Med; 2016; 2016():4809831. PubMed ID: 27127534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting protein-ligand binding site using support vector machine with protein properties.
    Wong GY; Leung FH; Ling SH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1517-29. PubMed ID: 24407309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening.
    Sato T; Honma T; Yokoyama S
    J Chem Inf Model; 2010 Jan; 50(1):170-85. PubMed ID: 20038188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening.
    Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y
    PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FlexX-Scan: fast, structure-based virtual screening.
    Schellhammer I; Rarey M
    Proteins; 2004 Nov; 57(3):504-17. PubMed ID: 15382244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual screening in drug discovery -- a computational perspective.
    Reddy AS; Pati SP; Kumar PP; Pradeep HN; Sastry GN
    Curr Protein Pept Sci; 2007 Aug; 8(4):329-51. PubMed ID: 17696867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors.
    Renner S; Schwab CH; Gasteiger J; Schneider G
    J Chem Inf Model; 2006; 46(6):2324-32. PubMed ID: 17125176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential and limitations of ensemble docking.
    Korb O; Olsson TS; Bowden SJ; Hall RJ; Verdonk ML; Liebeschuetz JW; Cole JC
    J Chem Inf Model; 2012 May; 52(5):1262-74. PubMed ID: 22482774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDOVS: a solvent dipole ordering-based method for virtual screening.
    Murata K; Nagata N; Nakanishi I; Kitaura K
    J Comput Chem; 2010 Nov; 31(15):2714-22. PubMed ID: 20839298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Ligand Empirical Interaction Components for Virtual Screening.
    Yan Y; Wang W; Sun Z; Zhang JZH; Ji C
    J Chem Inf Model; 2017 Aug; 57(8):1793-1806. PubMed ID: 28678484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.