BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27127535)

  • 1. Fluid Structural Analysis of Urine Flow in a Stented Ureter.
    Gómez-Blanco JC; Martínez-Reina FJ; Cruz D; Pagador JB; Sánchez-Margallo FM; Soria F
    Comput Math Methods Med; 2016; 2016():5710798. PubMed ID: 27127535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of the urine flow in a stented ureter with no peristalsis.
    Kim HH; Choi YH; Lee SB; Baba Y; Kim KW; Suh SH
    Biomed Mater Eng; 2015; 26 Suppl 1():S215-23. PubMed ID: 26405994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow dynamics in a stented ureter.
    Siggers JH; Waters S; Wattis J; Cummings L
    Math Med Biol; 2009 Mar; 26(1):1-24. PubMed ID: 18990681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations.
    Vahidi B; Fatouraee N; Imanparast A; Moghadam AN
    J Biomech Eng; 2011 Mar; 133(3):031004. PubMed ID: 21303180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the flow dynamics in the obstructed and stented ureter by means of a biomimetic artificial model.
    Clavica F; Zhao X; ElMahdy M; Drake MJ; Zhang X; Carugo D
    PLoS One; 2014; 9(2):e87433. PubMed ID: 24498322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of the urine flow in a stented ureter.
    Tong JC; Sparrow EM; Abraham JP
    J Biomech Eng; 2007 Apr; 129(2):187-92. PubMed ID: 17408323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-structure interaction simulation of ureter with vesicoureteral reflux and primary obstructed megaureter.
    Razavi SE; Jouybar M
    Biomed Mater Eng; 2018; 29(6):821-837. PubMed ID: 30282337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urine flow analysis using double J stents of various sizes in in vitro ureter models.
    Kim KW; Kim HH; Choi YH; Lee SB; Baba Y
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3294. PubMed ID: 31981313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Ureteral Deformation and External Ureteral Pressure on Stent Failure in Extrinsic Ureteral Obstruction: An
    Shilo Y; Modai J; Leibovici D; Dror I; Berkowitz B
    J Endourol; 2020 Jan; 34(1):68-73. PubMed ID: 31359787
    [No Abstract]   [Full Text] [Related]  

  • 10. An artificial model for studying fluid dynamics in the obstructed and stented ureter.
    Carugo D; Elmahdy M; Zhao X; Drake MJ; Zhang X; Clavica F
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5335-8. PubMed ID: 24110941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Numerical Simulations of Peristaltic Contractions in Obstructed Ureter Flows.
    Najafi Z; Gautam P; Schwartz BF; Chandy AJ; Mahajan AM
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27464354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of the effect of side holes of a double J stent on flow rate and pattern.
    Kim KW; Choi YH; Lee SB; Baba Y; Kim HH; Suh SH
    Biomed Mater Eng; 2015; 26 Suppl 1():S319-27. PubMed ID: 26406019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ureteric stents: investigating flow and encrustation.
    Waters SL; Heaton K; Siggers JH; Bayston R; Bishop M; Cummings LJ; Grant DM; Oliver JM; Wattis JA
    Proc Inst Mech Eng H; 2008 May; 222(4):551-61. PubMed ID: 18595364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of ureteral stents subject to extrinsic ureteral obstruction and stent occlusions.
    Amitay-Rosen T; Nissan A; Shilo Y; Dror I; Berkowitz B
    Int Urol Nephrol; 2021 Aug; 53(8):1535-1541. PubMed ID: 33595820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ureteral double-J wire stent effectiveness after endopyelotomy: an animal model study.
    Soria F; Delgado MI; Rioja LÁ; Blas M; Pamplona M; Durán E; Usón J; Sánchez FM
    Urol Int; 2010; 85(3):314-9. PubMed ID: 20389053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
    Martin DM; Murphy EA; Boyle FJ
    Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A short biodegradable helical spiral ureteric stent provides better antireflux and drainage properties than a double-J stent.
    Lumiaho J; Heino A; Aaltomaa S; Välimaa T; Talja M
    Scand J Urol Nephrol; 2011 Mar; 45(2):129-33. PubMed ID: 21222571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Accumulation in Ureteral Stents Is Governed by Fluid Dynamics: In Vitro Study Using a "Stent-on-Chip" Model.
    Mosayyebi A; Yue QY; Somani BK; Zhang X; Manes C; Carugo D
    J Endourol; 2018 Jul; 32(7):639-646. PubMed ID: 29699424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New bioabsorbable polylactide ureteral stent in the treatment of ureteral lesions: an experimental study.
    Lumiaho J; Heino A; Tunninen V; Ala-Opas M; Talja M; Välimaa T; Törmälä P
    J Endourol; 1999 Mar; 13(2):107-12. PubMed ID: 10213104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on ureteral peristalsis in a stented ureter. An experimental study in the pig.
    Kinn AC; Lykkeskov-Andersen H
    Urol Res; 2002 Sep; 30(4):213-8. PubMed ID: 12202937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.