These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27127674)

  • 1. Novel Desorber for Online Drilling Mud Gas Logging.
    Lackowski M; Tobiszewski M; Namieśnik J
    J Anal Methods Chem; 2016; 2016():7014068. PubMed ID: 27127674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line multi-gas component measurement in the mud logging process based on Raman spectroscopy combined with a CNN-LSTM-AM hybrid model.
    Cai Y; Xu G; Yang D; Tian H; Zhou F; Guo J
    Anal Chim Acta; 2023 Jun; 1259():341200. PubMed ID: 37100477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.
    Hammerschmidt SB; Wiersberg T; Heuer VB; Wendt J; Erzinger J; Kopf A
    Geochem Trans; 2014; 15(1):15. PubMed ID: 25648878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Onaizi SA; Gawish MA; Murtaza M; Gomaa I; Tariq Z; Mahmoud M
    ACS Omega; 2020 Dec; 5(47):30729-30739. PubMed ID: 33283121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Weighted Barite-Free Formate Drilling Mud for Well Construction under Complicated Conditions.
    Morenov V; Leusheva E; Liu T
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Logging-While-Drilling Method for Resistivity Measurement in Oil-Based Mud.
    Wu Y; Lu B; Zhang W; Jiang Y; Wang B; Huang Z
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Amphoteric Polymer as a Rheology Enhancer and Fluid-Loss Control Agent for Water-Based Drilling Muds at Elevated Temperatures.
    Hamad BA; He M; Xu M; Liu W; Mpelwa M; Tang S; Jin L; Song J
    ACS Omega; 2020 Apr; 5(15):8483-8495. PubMed ID: 32337409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Performance of a Membrane Desorber Operating under Simulated Warm Weather Condensation Temperatures.
    Ibarra-Bahena J; Rivera W; Nanco-Mejía SD; Romero RJ; Venegas-Reyes E; Dehesa-Carrasco U
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34206822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data on cost analysis of drilling mud displacement during drilling operation.
    Okoro EE; Dosunmu A; Iyuke SE
    Data Brief; 2018 Aug; 19():535-541. PubMed ID: 29900353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation of Gas-Liquid Gravity Displacement in Vertical Fractures during Drilling of Carbonate Formations.
    Peng C; Deng Z; Fu J; Cao Q; Zhang J; Li Q; Pang J; Yang Y; Yu Z
    ACS Omega; 2023 Mar; 8(9):8846-8864. PubMed ID: 36910932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Hydrogen Sulfide Scavenging via the Addition of Monoethanolamine to Water-Based Drilling Fluids.
    Ahmed A; Onaizi SA; Elkatatny S
    ACS Omega; 2022 Aug; 7(32):28361-28368. PubMed ID: 35990486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum Selection of H
    Murtaza M; Alarifi SA; Abozuhairah A; Mahmoud M; Onaizi SA; Al-Ajmi M
    ACS Omega; 2021 Sep; 6(38):24919-24930. PubMed ID: 34604673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the problems and solutions related to reference introduction prior to calibration of thermal desorber-gas chromatography.
    Asfaw AA; Van der Veken M; Wolfs K; Van Schepdael A; Adams E
    J Sep Sci; 2019 Sep; 42(17):2816-2825. PubMed ID: 31199054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New wellbore temperature control design for preventing failure and poor performance of logging tools in high pressure - high temperature wells.
    Odiete WE
    Heliyon; 2022 May; 8(5):e09404. PubMed ID: 35620632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the locally sourced materials as fluid loss control additives in water-based drilling fluid.
    Okon AN; Akpabio JU; Tugwell KW
    Heliyon; 2020 May; 6(5):e04091. PubMed ID: 32509995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of bioavailability of metals from drilling mud barite.
    Neff JM
    Integr Environ Assess Manag; 2008 Apr; 4(2):184-93. PubMed ID: 17994916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of absorber and desorber units and operational conditions for N-nitrosamine formation during amine-based carbon capture.
    Wang Z; Zhang Z; Mitch WA
    Water Res; 2020 Mar; 170():115299. PubMed ID: 31760360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of a mud pit by bioremediation.
    Avdalović J; Đurić A; Miletić S; Ilić M; Milić J; Vrvić MM
    Waste Manag Res; 2016 Aug; 34(8):734-9. PubMed ID: 27354013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive Bentonite for Water-Based Drilling Fluids.
    Dong W; Pu X; Ren Y; Zhai Y; Gao F; Xie W
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31262077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of multi-channel silicone rubber traps as denuders for polycyclic aromatic hydrocarbons.
    Forbes PB; Karg EW; Zimmermann R; Rohwer ER
    Anal Chim Acta; 2012 Jun; 730():71-9. PubMed ID: 22632047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.