These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. The projected timing of abrupt ecological disruption from climate change. Trisos CH; Merow C; Pigot AL Nature; 2020 Apr; 580(7804):496-501. PubMed ID: 32322063 [TBL] [Abstract][Full Text] [Related]
63. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Zeebe RE Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13739-44. PubMed ID: 23918402 [TBL] [Abstract][Full Text] [Related]
64. Assessing ozone-related health impacts under a changing climate. Knowlton K; Rosenthal JE; Hogrefe C; Lynn B; Gaffin S; Goldberg R; Rosenzweig C; Civerolo K; Ku JY; Kinney PL Environ Health Perspect; 2004 Nov; 112(15):1557-63. PubMed ID: 15531442 [TBL] [Abstract][Full Text] [Related]
65. 'I don't really associate climate change with actual people's health': a qualitative study in England of perceptions of climate change and its impacts on health. Martin-Kerry JM; Graham HM; Lampard P Public Health; 2023 Jun; 219():85-90. PubMed ID: 37126972 [TBL] [Abstract][Full Text] [Related]
66. Climate influence on dengue epidemics in Puerto Rico. Jury MR Int J Environ Health Res; 2008 Oct; 18(5):323-34. PubMed ID: 18821372 [TBL] [Abstract][Full Text] [Related]
67. The winters of our discontent. Loss of Arctic sea ice is stacking the deck in favor of harsh winter weather in the U.S. and Europe. Greene CH Sci Am; 2012 Dec; 307(6):50-5. PubMed ID: 23230797 [No Abstract] [Full Text] [Related]
68. Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers' Objective and Perceived Attributes of Adaptive Capacity. Gardezi M; Arbuckle JG Risk Anal; 2019 Jan; 39(1):17-34. PubMed ID: 29193188 [TBL] [Abstract][Full Text] [Related]
69. Cohort antler size signals environmental stress in a moderate climate. Strickland BK; Dixon PG; Jones PD; Demarais S; Owen NO; Cox DA; Landry-Guyton K; Baldwin WM; McKinley WT Int J Biometeorol; 2020 Apr; 64(4):611-621. PubMed ID: 31900588 [TBL] [Abstract][Full Text] [Related]
70. The 2 °C global warming effect on summer European tourism through different indices. Grillakis MG; Koutroulis AG; Tsanis IK Int J Biometeorol; 2016 Aug; 60(8):1205-15. PubMed ID: 26637196 [TBL] [Abstract][Full Text] [Related]
71. Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer. Buma B; Hennon PE; Harrington CA; Popkin JR; Krapek J; Lamb MS; Oakes LE; Saunders S; Zeglen S Glob Chang Biol; 2017 Jul; 23(7):2903-2914. PubMed ID: 27891717 [TBL] [Abstract][Full Text] [Related]
72. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771 [TBL] [Abstract][Full Text] [Related]
73. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Banu S; Hu W; Guo Y; Hurst C; Tong S Environ Int; 2014 Feb; 63():137-42. PubMed ID: 24291765 [TBL] [Abstract][Full Text] [Related]
74. Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Moore FC; Obradovich N; Lehner F; Baylis P Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4905-4910. PubMed ID: 30804179 [TBL] [Abstract][Full Text] [Related]
75. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Weinberger KR; Haykin L; Eliot MN; Schwartz JD; Gasparrini A; Wellenius GA Environ Int; 2017 Oct; 107():196-204. PubMed ID: 28750225 [TBL] [Abstract][Full Text] [Related]
76. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions. Mondal P; Jain M; DeFries RS; Galford GL; Small C J Environ Manage; 2015 Jan; 148():21-30. PubMed ID: 24680541 [TBL] [Abstract][Full Text] [Related]
77. Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005-2014. Xiang J; Hansen A; Liu Q; Tong MX; Liu X; Sun Y; Cameron S; Hanson-Easey S; Han GS; Williams C; Weinstein P; Bi P Sci Total Environ; 2018 Sep; 636():1249-1256. PubMed ID: 29913587 [TBL] [Abstract][Full Text] [Related]
78. What drives public transit organizations in the United States to adapt to extreme weather events? Miao Q; Welch EW; Zhang F; Sriraj PS J Environ Manage; 2018 Nov; 225():252-260. PubMed ID: 30096713 [TBL] [Abstract][Full Text] [Related]
79. Households' perception of climate change and human health risks: a community perspective. Haque MA; Yamamoto SS; Malik AA; Sauerborn R Environ Health; 2012 Jan; 11():1. PubMed ID: 22236490 [TBL] [Abstract][Full Text] [Related]
80. Under temperate weather conditions, dairy goats use an outdoor run more with increasing warmth and avoid light wind or rain. Stachowicz J; Lanter A; Gygax L; Hillmann E; Wechsler B; Keil NM J Dairy Sci; 2019 Feb; 102(2):1508-1521. PubMed ID: 30580943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]