BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27127842)

  • 21. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.
    Zhang P; Huang Y; Lu X; Zhang S; Li J; Wei G; Su Z
    Langmuir; 2014 Jul; 30(29):8980-9. PubMed ID: 25015184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar.
    Kim WH; Lee JU; Song S; Kim S; Choi YJ; Sim SJ
    Analyst; 2019 Feb; 144(5):1768-1776. PubMed ID: 30672519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy.
    Zhao J; Zhang K; Ji J; Liu B
    Talanta; 2016 May; 152():196-202. PubMed ID: 26992511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip.
    Lee JC; Kim W; Park HK; Choi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():37-43. PubMed ID: 27865935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PEGylated nanographene-mediated metallic nanoparticle clusters for surface enhanced Raman scattering-based biosensing.
    Ali A; Hwang EY; Choo J; Lim DW
    Analyst; 2018 May; 143(11):2604-2615. PubMed ID: 29741172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood.
    Hu SW; Qiao S; Pan JB; Kang B; Xu JJ; Chen HY
    Talanta; 2018 Mar; 179():9-14. PubMed ID: 29310319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of Gold Nanoparticle to Plasmonic Biosensors.
    Lee JH; Cho HY; Choi HK; Lee JY; Choi JW
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29997363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naked-Eye Enumeration of Single
    Chen F; Di T; Yang CT; Zhang T; Thierry B; Zhou X
    ACS Sens; 2020 Apr; 5(4):1140-1148. PubMed ID: 32207302
    [No Abstract]   [Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols.
    Alvarez-Puebla RA; Dos Santos JĂșnior DS; Aroca RF
    Analyst; 2004 Dec; 129(12):1251-6. PubMed ID: 15565227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules.
    Li Y; Zhang K; Zhao J; Ji J; Ji C; Liu B
    Talanta; 2016 Jan; 147():493-500. PubMed ID: 26592638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids.
    Hassanain WA; Izake EL; Schmidt MS; Ayoko GA
    Biosens Bioelectron; 2017 May; 91():664-672. PubMed ID: 28110251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering.
    Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY
    Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Layer-by-layer coating of natural diatomite with silver nanoparticles for identification of circulating cancer protein biomarkers using SERS.
    Saridag AM; Kahraman M
    Nanoscale; 2023 Aug; 15(33):13770-13783. PubMed ID: 37578149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method.
    Cheong Y; Kim YJ; Kang H; Choi S; Lee HJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():53-59. PubMed ID: 28437685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.