BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27127916)

  • 1. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transfer structure-reactivity dependence of fullerene-single-walled carbon nanotube heterojunctions.
    Hilmer AJ; Tvrdy K; Zhang J; Strano MS
    J Am Chem Soc; 2013 Aug; 135(32):11901-10. PubMed ID: 23848070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces.
    Bindl DJ; Safron NS; Arnold MS
    ACS Nano; 2010 Oct; 4(10):5657-64. PubMed ID: 20923182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60.
    Dowgiallo AM; Mistry KS; Johnson JC; Blackburn JL
    ACS Nano; 2014 Aug; 8(8):8573-81. PubMed ID: 25019648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Singlet Exciton Diffusion Length in Thin Evaporated C60 Films for Photovoltaics.
    Fravventura MC; Hwang J; Suijkerbuijk JW; Erk P; Siebbeles LD; Savenije TJ
    J Phys Chem Lett; 2012 Sep; 3(17):2367-73. PubMed ID: 26292116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics.
    Ham MH; Paulus GL; Lee CY; Song C; Kalantar-zadeh K; Choi W; Han JH; Strano MS
    ACS Nano; 2010 Oct; 4(10):6251-9. PubMed ID: 20886891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films.
    Bindl DJ; Wu MY; Prehn FC; Arnold MS
    Nano Lett; 2011 Feb; 11(2):455-60. PubMed ID: 21166422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells.
    Koleilat GI; Vosgueritchian M; Lei T; Zhou Y; Lin DW; Lissel F; Lin P; To JW; Xie T; England K; Zhang Y; Bao Z
    ACS Nano; 2016 Dec; 10(12):11258-11265. PubMed ID: 28024326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers.
    Rao A; Wilson MW; Hodgkiss JM; Albert-Seifried S; Bässler H; Friend RH
    J Am Chem Soc; 2010 Sep; 132(36):12698-703. PubMed ID: 20735067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWCNT Photocatalyst for Hydrogen Production from Water upon Photoexcitation of (8, 3) SWCNT at 680-nm Light.
    Murakami N; Tango Y; Miyake H; Tajima T; Nishina Y; Kurashige W; Negishi Y; Takaguchi Y
    Sci Rep; 2017 Mar; 7():43445. PubMed ID: 28262708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.
    Guillot SL; Mistry KS; Avery AD; Richard J; Dowgiallo AM; Ndione PF; van de Lagemaat J; Reese MO; Blackburn JL
    Nanoscale; 2015 Apr; 7(15):6556-66. PubMed ID: 25790468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.
    Mollahosseini M; Karunaratne E; Gibson GN; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2016 May; 138(18):5904-15. PubMed ID: 27127896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snapshots of the Fragmentation for C
    Lee JY; Lee C; Osawa E; Choi JW; Sur JC; Lee KH
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-fullerene acceptors: exciton dissociation with PTCDA versus C60.
    Dutton GJ; Robey SW
    Phys Chem Chem Phys; 2015 Jun; 17(24):15953-62. PubMed ID: 26027544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond Dynamics of Photoexcited C
    Causa' M; Ramirez I; Martinez Hardigree JF; Riede M; Banerji N
    J Phys Chem Lett; 2018 Apr; 9(8):1885-1892. PubMed ID: 29569924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers.
    Jain RM; Howden R; Tvrdy K; Shimizu S; Hilmer AJ; McNicholas TP; Gleason KK; Strano MS
    Adv Mater; 2012 Aug; 24(32):4436-9. PubMed ID: 22740144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer.
    Kuang Z; Berger FJ; Lustres JLP; Wollscheid N; Li H; Lüttgens J; Leinen MB; Flavel BS; Zaumseil J; Buckup T
    J Phys Chem C Nanomater Interfaces; 2021 Apr; 125(15):8125-8136. PubMed ID: 34055124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.
    Gong Y; Liu Q; Wilt JS; Gong M; Ren S; Wu J
    Sci Rep; 2015 Jun; 5():11328. PubMed ID: 26066737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.