These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27127973)

  • 1. Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets.
    Follett RK; Delettrez JA; Edgell DH; Goncharov VN; Henchen RJ; Katz J; Michel DT; Myatt JF; Shaw J; Solodov AA; Stoeckl C; Yaakobi B; Froula DH
    Phys Rev Lett; 2016 Apr; 116(15):155002. PubMed ID: 27127973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing Two-Plasmon Decay with Laser Frequency Detuning.
    Follett RK; Shaw JG; Myatt JF; Palastro JP; Short RW; Froula DH
    Phys Rev Lett; 2018 Mar; 120(13):135005. PubMed ID: 29694175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.
    Rosenberg MJ; Solodov AA; Myatt JF; Seka W; Michel P; Hohenberger M; Short RW; Epstein R; Regan SP; Campbell EM; Chapman T; Goyon C; Ralph JE; Barrios MA; Moody JD; Bates JW
    Phys Rev Lett; 2018 Feb; 120(5):055001. PubMed ID: 29481170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA.
    Hu SX; Smalyuk VA; Goncharov VN; Knauer JP; Radha PB; Igumenshchev IV; Marozas JA; Stoeckl C; Yaakobi B; Shvarts D; Sangster TC; McKenty PW; Meyerhofer DD; Skupsky S; McCrory RL
    Phys Rev Lett; 2008 May; 100(18):185003. PubMed ID: 18518383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion.
    Froula DH; Yaakobi B; Hu SX; Chang PY; Craxton RS; Edgell DH; Follett R; Michel DT; Myatt JF; Seka W; Short RW; Solodov A; Stoeckl C
    Phys Rev Lett; 2012 Apr; 108(16):165003. PubMed ID: 22680726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implosion experiments using glass ablators for direct-drive inertial confinement fusion.
    Smalyuk VA; Betti R; Delettrez JA; Glebov VY; Meyerhofer DD; Radha PB; Regan SP; Sangster TC; Sanz J; Seka W; Stoeckl C; Yaakobi B; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2010 Apr; 104(16):165002. PubMed ID: 20482057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-electron preheat and mitigation in polar-direct-drive experiments at the National Ignition Facility.
    Solodov AA; Rosenberg MJ; Stoeckl M; Christopherson AR; Betti R; Radha PB; Stoeckl C; Hohenberger M; Bachmann B; Epstein R; Follett RK; Seka W; Myatt JF; Michel P; Regan SP; Palastro JP; Froula DH; Campbell EM; Goncharov VN
    Phys Rev E; 2022 Nov; 106(5-2):055204. PubMed ID: 36559374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopant radiative cooling effects in indirect-drive Ar-doped capsule implosion experiments.
    MacFarlane JJ; Golovkin IE; Mancini RC; Welser LA; Bailey JE; Koch JA; Mehlhorn TA; Rochau GA; Wang P; Woodruff P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066403. PubMed ID: 16486066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonuniformly driven two-plasmon-decay instability in direct-drive implosions.
    Seka W; Myatt JF; Short RW; Froula DH; Katz J; Goncharov VN; Igumenshchev IV
    Phys Rev Lett; 2014 Apr; 112(14):145001. PubMed ID: 24765976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion.
    Yan R; Ren C; Li J; Maximov AV; Mori WB; Sheng ZM; Tsung FS
    Phys Rev Lett; 2012 Apr; 108(17):175002. PubMed ID: 22680873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion.
    Christopherson AR; Betti R; Forrest CJ; Howard J; Theobald W; Delettrez JA; Rosenberg MJ; Solodov AA; Stoeckl C; Patel D; Gopalaswamy V; Cao D; Peebles JL; Edgell DH; Seka W; Epstein R; Wei MS; Gatu Johnson M; Simpson R; Regan SP; Campbell EM
    Phys Rev Lett; 2021 Jul; 127(5):055001. PubMed ID: 34397224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.
    Hu SX; Fiksel G; Goncharov VN; Skupsky S; Meyerhofer DD; Smalyuk VA
    Phys Rev Lett; 2012 May; 108(19):195003. PubMed ID: 23003051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions.
    Casey DT; Woods DT; Smalyuk VA; Hurricane OA; Glebov VY; Stoeckl C; Theobald W; Wallace R; Nikroo A; Schoff M; Shuldberg C; Wu KJ; Frenje JA; Landen OL; Remington BA; Glendinning G
    Phys Rev Lett; 2015 May; 114(20):205002. PubMed ID: 26047234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast saturation of the two-plasmon-decay instability for shock-ignition conditions.
    Weber S; Riconda C; Klimo O; Héron A; Tikhonchuk VT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016403. PubMed ID: 22400684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums.
    Shan LQ; Cai HB; Zhang WS; Tang Q; Zhang F; Song ZF; Bi B; Ge FJ; Chen JB; Liu DX; Wang WW; Yang ZH; Qi W; Tian C; Yuan ZQ; Zhang B; Yang L; Jiao JL; Cui B; Zhou WM; Cao LF; Zhou CT; Gu YQ; Zhang BH; Zhu SP; He XT
    Phys Rev Lett; 2018 May; 120(19):195001. PubMed ID: 29799245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies.
    Kaselouris E; Fitilis I; Skoulakis A; Orphanos Y; Koundourakis G; Clark EL; Chatzakis J; Bakarezos Μ; Papadogiannis NA; Dimitriou V; Tatarakis M
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200030. PubMed ID: 33040652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Target Designs to Mitigate Hydrodynamic Instabilities Growth in Inertial Confinement Fusion.
    Qiao X; Lan K
    Phys Rev Lett; 2021 May; 126(18):185001. PubMed ID: 34018773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional particle-in-cell modeling of parametric instabilities near the quarter-critical density in plasmas.
    Wen H; Maximov AV; Yan R; Li J; Ren C; Tsung FS
    Phys Rev E; 2019 Oct; 100(4-1):041201. PubMed ID: 31771012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Measurement of Ice-Ablator Interface Motion for Instability Mitigation in Indirect Drive ICF Implosions.
    Do A; Weber CR; Dewald EL; Casey DT; Clark DS; Khan SF; Landen OL; MacPhee AG; Smalyuk VA
    Phys Rev Lett; 2022 Nov; 129(21):215003. PubMed ID: 36461978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cogeneration of hot electrons from multiple laser-plasma instabilities.
    Cao SH; Yan R; Wen H; Li J; Ren C
    Phys Rev E; 2020 May; 101(5-1):053205. PubMed ID: 32575279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.