These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27128106)

  • 21. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids.
    Simón L; Goodman JM
    J Am Chem Soc; 2008 Jul; 130(27):8741-7. PubMed ID: 18543923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goldilocks Catalysts: Computational Insights into the Role of the 3,3' Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts.
    Reid JP; Goodman JM
    J Am Chem Soc; 2016 Jun; 138(25):7910-7. PubMed ID: 27227372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.
    Xie JH; Zhou QL
    Acc Chem Res; 2008 May; 41(5):581-93. PubMed ID: 18311931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the mechanism of the asymmetric propargylation of aldehydes promoted by 1,1'-bi-2-naphthol-derived catalysts.
    Grayson MN; Goodman JM
    J Am Chem Soc; 2013 Apr; 135(16):6142-8. PubMed ID: 23517191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions.
    Terada M
    Chem Commun (Camb); 2008 Sep; (35):4097-112. PubMed ID: 18802501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed H-Transfer Hydrogenation of Quinoline.
    Pastor J; Rezabal E; Voituriez A; Betzer JF; Marinetti A; Frison G
    J Org Chem; 2018 Mar; 83(5):2779-2787. PubMed ID: 29389117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DFT study of the mechanism and origin of enantioselectivity in chiral BINOL-phosphoric acid catalyzed transfer hydrogenation of ketimine and α-imino ester using benzothiazoline.
    Shibata Y; Yamanaka M
    J Org Chem; 2013 Apr; 78(8):3731-6. PubMed ID: 23521654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origins of enantioselectivity in the chiral Brønsted acid catalyzed hydrophosphonylation of imines.
    Shi FQ; Song BA
    Org Biomol Chem; 2009 Apr; 7(7):1292-8. PubMed ID: 19300812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.
    Zhang X; Chung LW; Wu YD
    Acc Chem Res; 2016 Jun; 49(6):1302-10. PubMed ID: 27268125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bifunctional Lewis acid-nucleophile-based asymmetric catalysis: mechanistic evidence for imine activation working in tandem with chiral enolate formation in the synthesis of beta-lactams.
    France S; Shah MH; Weatherwax A; Wack H; Roth JP; Lectka T
    J Am Chem Soc; 2005 Feb; 127(4):1206-15. PubMed ID: 15669860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design.
    Wheeler SE; Seguin TJ; Guan Y; Doney AC
    Acc Chem Res; 2016 May; 49(5):1061-9. PubMed ID: 27110641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chiral phosphoric acid catalyzed aminative dearomatization of α-naphthols/Michael addition sequence.
    Xia ZL; Zheng C; Xu RQ; You SL
    Nat Commun; 2019 Jul; 10(1):3150. PubMed ID: 31316064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations.
    Champagne PA; Houk KN
    J Am Chem Soc; 2016 Sep; 138(38):12356-9. PubMed ID: 27629045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic origins of the stereochemistry in β-lactam formed through the Staudinger reaction catalyzed by a nucleophile.
    Pahlavan F; Moosavi SS; Zolghadr AR; Iranpoor N
    RSC Adv; 2023 Nov; 13(48):33654-33667. PubMed ID: 38020014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions.
    Wei Y; Shi M
    Acc Chem Res; 2010 Jul; 43(7):1005-18. PubMed ID: 20232829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binaphthol-derived bisphosphoric acids serve as efficient organocatalysts for highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides to electron-deficient olefins.
    He L; Chen XH; Wang DN; Luo SW; Zhang WQ; Yu J; Ren L; Gong LZ
    J Am Chem Soc; 2011 Aug; 133(34):13504-18. PubMed ID: 21780781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity.
    Marcelli T; Hammar P; Himo F
    Chemistry; 2008; 14(28):8562-71. PubMed ID: 18683177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.