BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27128155)

  • 1. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N
    J Nat Prod; 2016 May; 79(5):1381-7. PubMed ID: 27128155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N; Masuda D
    J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage.
    Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D
    Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and suppression of internal blue discoloration in roots of daikon, the Japanese radish (
    Teranishi K; Nagata M
    Food Sci Nutr; 2018 Nov; 6(8):2134-2140. PubMed ID: 30510714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Disturbance of the Antioxidant System Results in Internal Blue Discoloration of Postharvest Cherry Radish (
    Wang X; Liu Y; Zhao W; Wang P; Zhao S; Zhao X; Wang D
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
    Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH
    J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory mechanism of low-oxygen-storage treatment in postharvest internal bluing of radish (Raphanus sativus) roots.
    Zhao X; Zhang Y; Ma Y; Zhang L; Jiang Y; Liang H; Wang D
    Food Chem; 2021 Dec; 364():130423. PubMed ID: 34198034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of off-flavours from radish (Raphanus sativus L.) anthocyanin-rich pigments using chitosan and its mechanism(s).
    Gao R; Jing P; Ruan S; Zhang Y; Zhao S; Cai Z; Qian B
    Food Chem; 2014 Mar; 146():423-8. PubMed ID: 24176362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucoraphasatin: chemistry, occurrence, and biological properties.
    Montaut S; Barillari J; Iori R; Rollin P
    Phytochemistry; 2010 Jan; 71(1):6-12. PubMed ID: 19896154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.).
    Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T
    Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of glucosinolates in pickling cruciferous vegetables.
    Suzuki C; Ohnishi-Kameyama M; Sasaki K; Murata T; Yoshida M
    J Agric Food Chem; 2006 Dec; 54(25):9430-6. PubMed ID: 17147429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the glucosinolate-myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties.
    Nakamura Y; Nakamura K; Asai Y; Wada T; Tanaka K; Matsuo T; Okamoto S; Meijer J; Kitamura Y; Nishikawa A; Park EY; Sato K; Ohtsuki K
    J Agric Food Chem; 2008 Apr; 56(8):2702-7. PubMed ID: 18345631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Six new acylated anthocyanins from red radish (Raphanus sativus).
    Tamura S; Tsuji K; Yongzhen P; Ohnishi-Kameyama M; Murakami N
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1259-62. PubMed ID: 20823613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Identification of Labile Precursor Compounds and their Short-lived Intermediates in Plants using in vivo Nanospray High-resolution Mass Spectrometry.
    Chang Q; Peng Y; Shi B; Dan C; Yang Y; Shuai Q
    Phytochem Anal; 2016 May; 27(3-4):184-90. PubMed ID: 27313155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest.
    Lee JG; Lim S; Kim J; Lee EJ
    Food Chem; 2017 Oct; 233():60-68. PubMed ID: 28530612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes.
    Schäfer J; Brett A; Trierweiler B; Bunzel M
    J Agric Food Chem; 2016 Nov; 64(45):8625-8632. PubMed ID: 27744693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of heat stress on the biological Maillard reaction, oxidative stress, and occurrence of internal browning in Japanese radish (Raphanus sativus L.).
    Fukuoka N; Hamada T
    J Plant Physiol; 2021 Jan; 256():153326. PubMed ID: 33310528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products.
    Scholl C; Eshelman BD; Barnes DM; Hanlon PR
    J Food Sci; 2011 Apr; 76(3):C504-11. PubMed ID: 21535821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Absolute Configuration of a Monoglyceride Antibolting Compound and Isolation of Related Compounds from Radish Leaves (Raphanus sativus).
    Ogihara T; Amano N; Mitsui Y; Fujino K; Ohta H; Takahashi K; Matsuura H
    J Nat Prod; 2017 Apr; 80(4):872-878. PubMed ID: 28333463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions.
    Malik MS; Riley MB; Norsworthy JK; Bridges W
    J Agric Food Chem; 2010 Nov; 58(22):11626-32. PubMed ID: 20964435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.