BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27128155)

  • 21. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties.
    Barillari J; Cervellati R; Paolini M; Tatibouët A; Rollin P; Iori R
    J Agric Food Chem; 2005 Dec; 53(26):9890-6. PubMed ID: 16366671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish (
    Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The primary active components, antioxidant properties, and differential metabolite profiles of radish sprouts (Raphanus sativus L.) upon domestic storage: analysis of nutritional quality.
    Li R; Zhu Y
    J Sci Food Agric; 2018 Dec; 98(15):5853-5860. PubMed ID: 29786832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of blue discoloration in radish root among different varieties and blue pigment stability analysis.
    Zhang Y; Zhao X; Ma Y; Jiang Y; Wang D; Liang H
    Food Chem; 2021 Mar; 340():128164. PubMed ID: 33011470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots.
    Hanlon PR; Barnes DM
    J Food Sci; 2011; 76(1):C185-92. PubMed ID: 21535648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors (
    Zhang J; Qiu X; Tan Q; Xiao Q; Mei S
    J Agric Food Chem; 2020 Dec; 68(49):14463-14470. PubMed ID: 33216541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil.
    Zheng RL; Li HF; Jiang RF; Zhang FS
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering the Nutraceutical Potential of
    Manivannan A; Kim JH; Kim DS; Lee ES; Lee HE
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30769862
    [No Abstract]   [Full Text] [Related]  

  • 29. Metabolomic approach of azole fungicides in radish (Raphanus sativus): Perspective of functional metabolites.
    Yu JW; Song MH; Keum YS; Lee JH
    J Hazard Mater; 2023 Apr; 448():130937. PubMed ID: 36758439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis.
    Wang J; Qiu Y; Wang X; Yue Z; Yang X; Chen X; Zhang X; Shen D; Wang H; Song J; He H; Li X
    Sci Rep; 2017 Nov; 7(1):16040. PubMed ID: 29167500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening, identification and quantification of glucosinolates in black radish (Raphanus sativus L. niger) based dietary supplements using liquid chromatography coupled with a photodiode array and liquid chromatography-mass spectrometry.
    Ediage EN; Di Mavungu JD; Scippo ML; Schneider YJ; Larondelle Y; Callebaut A; Robbens J; Van Peteghem C; De Saeger S
    J Chromatogr A; 2011 Jul; 1218(28):4395-405. PubMed ID: 21640355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium.
    Pedrero Z; Madrid Y; Cámara C
    J Agric Food Chem; 2006 Mar; 54(6):2412-7. PubMed ID: 16536627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Branched-chain amino acid synthesis and glucosinolate-myrosinase system during takuan-zuke processing of radish root.
    Kobayashi W; Kobayashi T; Takahashi A; Kumakura K; Ayabe S; Matsuoka H
    J Food Biochem; 2021 Dec; 45(12):e13983. PubMed ID: 34730849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum).
    Malik MS; Riley MB; Norsworthy JK; Bridges W
    J Agric Food Chem; 2010 Mar; 58(6):3309-15. PubMed ID: 20163113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular insights: Proteomic and metabolomic dissection of plasma-induced growth and functional compound accumulation in Raphanus sativus.
    Gupta R; Kaushik N; Negi M; Kaushik NK; Choi EH
    Food Chem; 2024 Mar; 435():137548. PubMed ID: 37804729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of HPLC Method for Quantification of Sinigrin from
    Nair AB; Gandhi D; Patel SS; Morsy MA; Gorain B; Attimarad M; Shah JN
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raphanus sativus L. var niger as a source of phytochemicals for the prevention of cholesterol gallstones.
    Castro-Torres IG; De la O-Arciniega M; Gallegos-Estudillo J; Naranjo-Rodríguez EB; Domínguez-Ortíz MÁ
    Phytother Res; 2014 Feb; 28(2):167-71. PubMed ID: 23495001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local boron concentrations in tuberous roots of Japanese radish (Raphanus sativus L.) negatively correlate with distribution of brown heart.
    Sotta N; Bian B; Peng D; Hongkham P; Kamiya T; Niikura S; Fujiwara T
    Plant Physiol Biochem; 2019 Mar; 136():58-66. PubMed ID: 30654288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in amylase activities in radish (Raphanus sativus) cultivars.
    Hara M; Ito F; Asai T; Kuboi T
    Plant Foods Hum Nutr; 2009 Sep; 64(3):188-92. PubMed ID: 19655255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract.
    Barillari J; Cervellati R; Costa S; Guerra MC; Speroni E; Utan A; Iori R
    J Agric Food Chem; 2006 Dec; 54(26):9773-8. PubMed ID: 17177500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.