BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27128498)

  • 1. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review.
    Alaraby M; Annangi B; Marcos R; Hernández A
    J Toxicol Environ Health B Crit Rev; 2016; 19(2):65-104. PubMed ID: 27128498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials.
    Demir E; Demir FT; Marcos R
    Adv Exp Med Biol; 2022; 1357():275-301. PubMed ID: 35583649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila melanogaster as a model organism to study nanotoxicity.
    Ong C; Yung LY; Cai Y; Bay BH; Baeg GH
    Nanotoxicology; 2015 May; 9(3):396-403. PubMed ID: 25051331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster.
    Vecchio G; Galeone A; Brunetti V; Maiorano G; Rizzello L; Sabella S; Cingolani R; Pompa PP
    Nanomedicine; 2012 Jan; 8(1):1-7. PubMed ID: 22094122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Demir E
    Nanotoxicology; 2020 Nov; 14(9):1271-1279. PubMed ID: 32969292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research strategy for evaluation methods of the manufactured nanomaterials in NIHS and importance of the chronic health effects studies].
    Hirose A; Nishimura T; Kanno J
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2009; (127):15-25. PubMed ID: 20306702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila.
    Ávalos A; Haza AI; Drosopoulou E; Mavragani-Tsipidou P; Morales P
    Food Chem Toxicol; 2015 Nov; 85():114-9. PubMed ID: 26169716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotoxic analysis of silver nanoparticles in Drosophila.
    Demir E; Vales G; Kaya B; Creus A; Marcos R
    Nanotoxicology; 2011 Sep; 5(3):417-24. PubMed ID: 21039182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk management of nanomaterials.
    Gwinn MR; Tran L
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(2):130-7. PubMed ID: 20077523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms.
    Chifiriuc MC; Ratiu AC; Popa M; Ecovoiu AA
    Int J Mol Sci; 2016 Feb; 17(2):36. PubMed ID: 26907252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.
    Carmona ER; Escobar B; Vales G; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila melanogaster: a model organism for controlling Dipteran vectors and pests.
    Zolfaghari Emameh R; Syrjänen L; Barker H; Supuran CT; Parkkila S
    J Enzyme Inhib Med Chem; 2015 Jun; 30(3):505-13. PubMed ID: 25198895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds.
    Jafari M
    Fly (Austin); 2010; 4(3):253-7. PubMed ID: 20473034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials.
    Som C; Nowack B; Krug HF; Wick P
    Acc Chem Res; 2013 Mar; 46(3):863-72. PubMed ID: 23110540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow.
    Balasubramanyam A; Sailaja N; Mahboob M; Rahman MF; Misra S; Hussain SM; Grover P
    Mutat Res; 2009 May; 676(1-2):41-7. PubMed ID: 19486863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?
    Avanesian A; Semnani S; Jafari M
    Drug Discov Today; 2009 Aug; 14(15-16):761-6. PubMed ID: 19482095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Health risks of engineered nanomaterials and nanotechnologies].
    Savolainen K; Vainio H
    Duodecim; 2011; 127(11):1097-104. PubMed ID: 21755801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.