BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27128688)

  • 1. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.
    Slocum JD; Webb LJ
    J Am Chem Soc; 2016 May; 138(20):6561-70. PubMed ID: 27128688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.
    Deb P; Haldar T; Kashid SM; Banerjee S; Chakrabarty S; Bagchi S
    J Phys Chem B; 2016 May; 120(17):4034-46. PubMed ID: 27090068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pK
    Slocum JD; First JT; Webb LJ
    J Phys Chem B; 2017 Jul; 121(28):6799-6812. PubMed ID: 28650636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the Effects of Hydrogen Bonding on Nitrile Frequencies in GFP: Beyond Solvent Exposure.
    First JT; Slocum JD; Webb LJ
    J Phys Chem B; 2018 Jul; 122(26):6733-6743. PubMed ID: 29874077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMOEBA Force Field Predicts Accurate Hydrogen Bond Counts of Nitriles in SNase by Revealing Water-Protein Interaction in Vibrational Absorption Frequencies.
    Lin YC; Ren P; Webb LJ
    J Phys Chem B; 2023 Jun; 127(25):5609-5619. PubMed ID: 37339399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrile Infrared Intensities Characterize Electric Fields and Hydrogen Bonding in Protic, Aprotic, and Protein Environments.
    Weaver JB; Kozuch J; Kirsh JM; Boxer SG
    J Am Chem Soc; 2022 May; 144(17):7562-7567. PubMed ID: 35467853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond p
    First JT; Novelli ET; Webb LJ
    J Phys Chem B; 2020 Apr; 124(16):3387-3399. PubMed ID: 32212657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrile bonds as infrared probes of electrostatics in ribonuclease S.
    Fafarman AT; Boxer SG
    J Phys Chem B; 2010 Oct; 114(42):13536-44. PubMed ID: 20883003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes.
    Slocum JD; Webb LJ
    Annu Rev Phys Chem; 2018 Apr; 69():253-271. PubMed ID: 29677466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields.
    Kirsh JM; Weaver JB; Boxer SG; Kozuch J
    J Am Chem Soc; 2024 Mar; 146(10):6983-6991. PubMed ID: 38415598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields.
    Bagchi S; Fried SD; Boxer SG
    J Am Chem Soc; 2012 Jun; 134(25):10373-6. PubMed ID: 22694663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue Fluorescence of Cyano-tryptophan Predicts Local Electrostatics and Hydrogen Bonding in Biomolecules.
    Haldar T; Chatterjee S; Alam MN; Maity P; Bagchi S
    J Phys Chem B; 2022 Dec; 126(50):10732-10740. PubMed ID: 36511763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes.
    Fried SD; Bagchi S; Boxer SG
    J Am Chem Soc; 2013 Jul; 135(30):11181-92. PubMed ID: 23808481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations.
    Shrestha R; Cardenas AE; Elber R; Webb LJ
    J Phys Chem B; 2015 Feb; 119(7):2869-76. PubMed ID: 25602635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins.
    Suydam IT; Boxer SG
    Biochemistry; 2003 Oct; 42(41):12050-5. PubMed ID: 14556636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic fields near the active site of human aldose reductase: 1. New inhibitors and vibrational stark effect measurements.
    Webb LJ; Boxer SG
    Biochemistry; 2008 Feb; 47(6):1588-98. PubMed ID: 18205401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds.
    Xu L; Cohen AE; Boxer SG
    Biochemistry; 2011 Oct; 50(39):8311-22. PubMed ID: 21859105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.
    Layfield JP; Hammes-Schiffer S
    J Am Chem Soc; 2013 Jan; 135(2):717-25. PubMed ID: 23210919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2014 Jul; 118(28):7692-702. PubMed ID: 24446740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview.
    Lindquist BA; Furse KE; Corcelli SA
    Phys Chem Chem Phys; 2009 Oct; 11(37):8119-32. PubMed ID: 19756266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.