These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27128695)

  • 1. Characterizing the genetic structure of a forensic DNA database using a latent variable approach.
    Kruijver M
    Forensic Sci Int Genet; 2016 Jul; 23():130-149. PubMed ID: 27128695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Familial searching: a specialist forensic DNA profiling service utilising the National DNA Database to identify unknown offenders via their relatives--the UK experience.
    Maguire CN; McCallum LA; Storey C; Whitaker JP
    Forensic Sci Int Genet; 2014 Jan; 8(1):1-9. PubMed ID: 24315582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of sibling pairs to determine the familial searching efficiency of forensic databases.
    Reid TM; Baird ML; Reid JP; Lee SC; Lee RF
    Forensic Sci Int Genet; 2008 Sep; 2(4):340-2. PubMed ID: 19083845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Familial searching on DNA mixtures with dropout.
    Slooten K
    Forensic Sci Int Genet; 2016 May; 22():128-138. PubMed ID: 26905597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of SmartRank: A likelihood ratio software for searching national DNA databases with complex DNA profiles.
    Benschop CCG; van de Merwe L; de Jong J; Vanvooren V; Kempenaers M; Kees van der Beek CP; Barni F; Reyes EL; Moulin L; Pene L; Haned H; Sijen T
    Forensic Sci Int Genet; 2017 Jul; 29():145-153. PubMed ID: 28441635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating DNA evidence in a genetically complex population.
    Hessab T; Aranha RS; Moura-Neto RS; Balding DJ; Schrago CG
    Forensic Sci Int Genet; 2018 Sep; 36():141-147. PubMed ID: 29990826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial matches in heterogeneous offender databases do not call into question the validity of random match probability calculations.
    Budowle B; Baechtel FS; Chakraborty R
    Int J Legal Med; 2009 Jan; 123(1):59-63. PubMed ID: 18458929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The successful use of familial searching in six Hungarian high profile cases by applying a new module in Familias 3.
    Kling D; Füredi S
    Forensic Sci Int Genet; 2016 Sep; 24():24-32. PubMed ID: 27267559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting the Balding-Nichols model to forensic databases.
    Rohlfs RV; Aguiar VRC; Lohmueller KE; Castro AM; Ferreira ACS; Almeida VCO; Louro ID; Nielsen R
    Forensic Sci Int Genet; 2015 Nov; 19():86-91. PubMed ID: 26186694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Familial identification: population structure and relationship distinguishability.
    Rohlfs RV; Fullerton SM; Weir BS
    PLoS Genet; 2012 Feb; 8(2):e1002469. PubMed ID: 22346758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture.
    Haned H; Pène L; Sauvage F; Pontier D
    Forensic Sci Int Genet; 2011 Aug; 5(4):281-4. PubMed ID: 20488773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?
    Haned H; Pène L; Lobry JR; Dufour AB; Pontier D
    J Forensic Sci; 2011 Jan; 56(1):23-8. PubMed ID: 20840286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining allele frequency uncertainty and population substructure corrections in forensic DNA calculations.
    Cowell R
    Forensic Sci Int Genet; 2016 Jul; 23():210-216. PubMed ID: 27231804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching mixed DNA profiles directly against profile databases.
    Bright JA; Taylor D; Curran J; Buckleton J
    Forensic Sci Int Genet; 2014 Mar; 9():102-10. PubMed ID: 24528588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice of population database for forensic DNA profile analysis.
    Steele CD; Balding DJ
    Sci Justice; 2014 Dec; 54(6):487-93. PubMed ID: 25498938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Database extraction strategies for low-template evidence.
    Bleka Ø; Dørum G; Haned H; Gill P
    Forensic Sci Int Genet; 2014 Mar; 9():134-41. PubMed ID: 24528591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying common donors in DNA mixtures, with applications to database searches.
    Slooten K
    Forensic Sci Int Genet; 2017 Jan; 26():40-47. PubMed ID: 27780107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the statistical power of DNA-based identification, exemplified by 'The missing grandchildren of Argentina'.
    Kling D; Egeland T; Piñero MH; Vigeland MD
    Forensic Sci Int Genet; 2017 Nov; 31():57-66. PubMed ID: 28858673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Likelihood ratios for evaluating DNA matches obtained from a database search when there is substructure in the population.
    Spooner M; Stockmarr A
    Stat Med; 2019 Nov; 38(25):5010-5020. PubMed ID: 31436872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The factor of 10 in forensic DNA match probabilities.
    Gittelson S; Moretti TR; Onorato AJ; Budowle B; Weir BS; Buckleton J
    Forensic Sci Int Genet; 2017 May; 28():178-187. PubMed ID: 28273509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.