These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27128725)

  • 1. Top-down and bottom-up attention cause the ventriloquism effect with distinct electroencephalography modulations.
    Kumagai T; Mizuhara H
    Neuroreport; 2016 Jun; 27(9):647-51. PubMed ID: 27128725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation.
    Bertini C; Leo F; Avenanti A; Làdavas E
    Eur J Neurosci; 2010 May; 31(10):1791-9. PubMed ID: 20584183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Neurophysiological Basis of the Trial-Wise and Cumulative Ventriloquism Aftereffects.
    Park H; Kayser C
    J Neurosci; 2021 Feb; 41(5):1068-1079. PubMed ID: 33273069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reward expectation influences audiovisual spatial integration.
    Bruns P; Maiworm M; Röder B
    Atten Percept Psychophys; 2014 Aug; 76(6):1815-27. PubMed ID: 24874263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contextual factors multiplex to control multisensory processes.
    Sarmiento BR; Matusz PJ; Sanabria D; Murray MM
    Hum Brain Mapp; 2016 Jan; 37(1):273-88. PubMed ID: 26466522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and decay of visual capture and the ventriloquism aftereffect caused by brief audio-visual disparities.
    Bosen AK; Fleming JT; Allen PD; O'Neill WE; Paige GD
    Exp Brain Res; 2017 Feb; 235(2):585-595. PubMed ID: 27837258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-modal emotional attention: emotional voices modulate early stages of visual processing.
    Brosch T; Grandjean D; Sander D; Scherer KR
    J Cogn Neurosci; 2009 Sep; 21(9):1670-9. PubMed ID: 18767920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-associated modulations of cerebral oscillatory patterns related to attention control.
    Deiber MP; Ibañez V; Missonnier P; Rodriguez C; Giannakopoulos P
    Neuroimage; 2013 Nov; 82():531-46. PubMed ID: 23777759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involuntary listening aids seeing: evidence from human electrophysiology.
    McDonald JJ; Ward LM
    Psychol Sci; 2000 Mar; 11(2):167-71. PubMed ID: 11273425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An fMRI Study of the Ventriloquism Effect.
    Callan A; Callan D; Ando H
    Cereb Cortex; 2015 Nov; 25(11):4248-58. PubMed ID: 25577576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain dynamics of distractibility: interaction between top-down and bottom-up mechanisms of auditory attention.
    Bidet-Caulet A; Bottemanne L; Fonteneau C; Giard MH; Bertrand O
    Brain Topogr; 2015 May; 28(3):423-36. PubMed ID: 24531985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sounds activate visual cortex and improve visual discrimination.
    Feng W; Störmer VS; Martinez A; McDonald JJ; Hillyard SA
    J Neurosci; 2014 Jul; 34(29):9817-24. PubMed ID: 25031419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ERP evidence for cross-modal audiovisual effects of endogenous spatial attention within hemifields.
    Eimer M; van Velzen J; Driver J
    J Cogn Neurosci; 2004 Mar; 16(2):272-88. PubMed ID: 15068597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.
    Keitel C; Müller MM
    Exp Brain Res; 2016 May; 234(5):1221-31. PubMed ID: 26226930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: a concurrent fNIRS-ERP study.
    Huang J; Wang F; Ding Y; Niu H; Tian F; Liu H; Song Y
    Neuroimage; 2015 Jun; 113():225-34. PubMed ID: 25818691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.
    Wang W; Viswanathan S; Lee T; Grafton ST
    PLoS One; 2016; 11(7):e0158465. PubMed ID: 27391013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of attention on early cortical processes associated with the sound-induced extra flash illusion.
    Mishra J; Martínez A; Hillyard SA
    J Cogn Neurosci; 2010 Aug; 22(8):1714-29. PubMed ID: 19583464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.