These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27128920)

  • 1. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones.
    Hennig S; Rödel G; Ostermann K
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27128920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification.
    Gross A; Rödel G; Ostermann K
    Lett Appl Microbiol; 2011 May; 52(5):521-6. PubMed ID: 21338378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A yeast pheromone-based inter-species communication system.
    Hennig S; Clemens A; Rödel G; Ostermann K
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1299-308. PubMed ID: 25331280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins.
    Fokina O; Fenchel A; Winandy L; Fischer R
    Appl Environ Microbiol; 2016 Nov; 82(21):6395-6402. PubMed ID: 27565614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability.
    Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M
    Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins.
    Ball SR; Pham CLL; Lo V; Morris VK; Kwan AH; Sunde M
    Methods Mol Biol; 2020; 2073():55-72. PubMed ID: 31612436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins.
    Yang W; Ren Q; Wu YN; Morris VK; Rey AA; Braet F; Kwan AH; Sunde M
    Biopolymers; 2013 Jan; 99(1):84-94. PubMed ID: 23097233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of pheromone production and response in fission yeast by a halo test of induced sporulation.
    Egel R; Willer M; Kjaerulff S; Davey J; Nielsen O
    Yeast; 1994 Oct; 10(10):1347-54. PubMed ID: 7900424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular quantification of Saccharomyces cerevisiae α-pheromone secretion.
    Rogers DW; McConnell E; Greig D
    FEMS Yeast Res; 2012 Sep; 12(6):668-74. PubMed ID: 22672638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining mutations in the incoming and outgoing pheromone signal pathways causes a synergistic mating defect in Saccharomyces cerevisiae.
    Giot L; DeMattei C; Konopka JB
    Yeast; 1999 Jun; 15(9):765-80. PubMed ID: 10398345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins.
    Morris VK; Sunde M
    Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded amplifying circuit enables sensitive detection of fungal pathogens.
    Fan C; He N; Yuan J
    Biosens Bioelectron; 2024 Apr; 250():116058. PubMed ID: 38281368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae.
    Hara K; Ono T; Kuroda K; Ueda M
    J Biochem; 2012 May; 151(5):551-7. PubMed ID: 22406406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pheromone-inducible expression vectors for fission yeast Schizosaccharomyces pombe.
    Hennig S; Hornauer N; Rödel G; Ostermann K
    Plasmid; 2018 Jan; 95():1-6. PubMed ID: 29183750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier activity in Candida albicans mediates pheromone degradation and promotes mating.
    Schaefer D; Côte P; Whiteway M; Bennett RJ
    Eukaryot Cell; 2007 Jun; 6(6):907-18. PubMed ID: 17416895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the mgc1 mutation which affects mating-pheromone-induced morphogenesis in the yeast Saccharomyces cerevisiae.
    Fujimura HA
    FEMS Microbiol Lett; 1998 Apr; 161(2):359-64. PubMed ID: 9570127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.
    Ding BJ; Lager I; Bansal S; Durrett TP; Stymne S; Löfstedt C
    Lipids; 2016 Apr; 51(4):469-75. PubMed ID: 26801935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating Surface Properties Using a Palette of Hydrophobins.
    Zampieri F; Wösten HAB; Scholtmeijer K
    Materials (Basel); 2010 Sep; 3(9):4607-4625. PubMed ID: 28883343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.